

Zephyr Project Overview

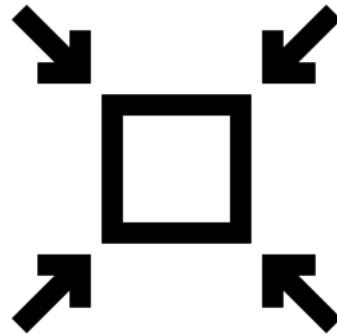
A proven RTOS ecosystem, by developers, for developers

Use cases for a real-time OS

Industrial IoT

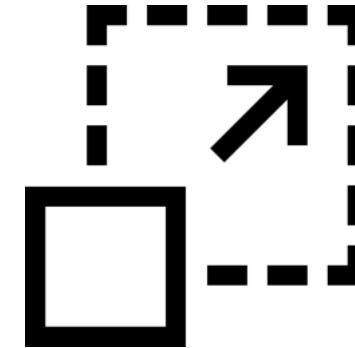
Asset Tracking

Wearables


Automotive

Healthcare

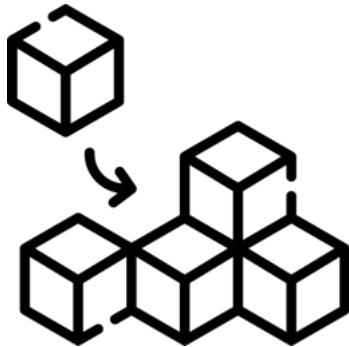
Appliances



SMALL

< 8KB Flash

< 5KB RAM


yet

SCALABLE

from small sensor nodes

... to complex multi-core systems

FLEXIBLE

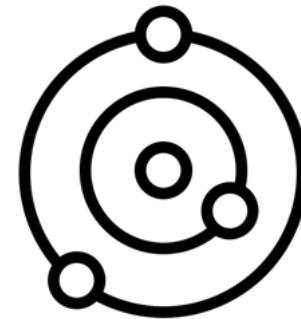
yet

SECURE

Heavily customizable

Built with safety & security in mind

Out-of-the-box support for
750+ boards and 100s of sensors


Certification-ready
Long-term Support

OPEN-SOURCE

Permissively licensed (Apache 2.0)

Vendor-neutral governance

ECOSYSTEM

Vibrant community

Supported by major silicon vendors

Features overview

- **Lightweight kernel & supporting drivers and services**
- **Portable, secure, power-efficient**
- **Highly connected**
 - Bluetooth 5.0 & BLE
 - Wi-Fi, Ethernet, CANbus, ...
 - IoT protocols: CoAP, LwM2M, MQTT, OpenThread, ...
 - USB & USB-C
- **Complete developer environment**
 - Toolchain and HAL management
 - Logging, tracing, debugging
 - Emulation/Simulation
 - Testing framework

Products Running Zephyr Today

Oticon More Hearing Aid

Lildog & Lilcat Pet Tracker

Livestock Tracker

Moto Watch 100

Samsung Galaxy Ring

Proglove

Adhoc Smart Waste

Google Chromebook

Framework laptop

Keeb.io BDN9

Hati-ACE

Blackhole™ PCIe AI Accelerator

BLiXT solid state circuit breaker

Aethero Deimos Satellite

PHYTEC Distancer

Laird Connectivity sensors & gateways

BeST pump monitoring

Vestas Wind Turbines

zephyrproject.org/products-running-zephyr

Products Running Zephyr Today

Discreet rechargeable hearing aid that gives you access to all relevant sounds

Oticon More supports the brain in making sense of sound and it is easy to operate with a double push button for volume and programme control. It features Bluetooth wireless technology for seamless connectivity with your favourite devices.

oticon
life-changing **technology**

Bluetooth LE

Low Power

zephyrproject.org/portfolio/oticon-more

Products Running Zephyr Today

Sustainable energy solutions

Vestas is the energy industry's global partner on sustainable energy solutions. We design, manufacture, install, and service onshore and offshore wind turbines across the globe, and with more than 164 GW of wind turbines in 87 countries, we have installed more wind power than anyone else. Through our industry-leading smart data capabilities and unparalleled more than 144 GW of wind turbines under service, we use data to interpret, forecast, and exploit wind resources and deliver best-in-class wind power solutions. Together with our customers, Vestas' more than 28,000 employees are bringing the world sustainable energy solutions to power a bright future.

Vestas[®]

CANbus

Industrial Control

zephyrproject.org/portfolio/vestas-wind-turbines

Products Running Zephyr Today

Thin, light, high-performance 13.5" notebook

A thin, light, high-performance 13.5" notebook that is also easy to repair, upgrade, and customize. The embedded controller firmware is a fork of the Zephyr version of chromium-ec, and is fully open source.

 framework

Embedded Controller

USB / USB-C

Power Mgmt

zephyrproject.org/portfolio/framework-laptop-13-diy-edition-amd-ryzen-7040-series

Products Running Zephyr Today

Professional grade, digital tape measure

The T1 Tomahawk, the world's first, professional grade, digital tape measure enables tradespeople, across industries, to collect measurements faster and more accurately than ever before. A live view, OLED display, shows measurements of the tape measure, digitally, in both english and metric units. With a click of a button, measurements are saved to a side mounted e-paper display as well as sent over Bluetooth to connected devices.

The Reekon logo consists of the word "REEKÖN" in a bold, black, sans-serif font. The letter "Ö" has a small vertical bar through it. The logo is set against a dark background with a thin yellow horizontal line running through the center.

Low Power

Sensing

zephyrproject.org/portfolio/reekon-t1-tomahawk

Products Running Zephyr Today

Turns your wired sensors into IP67-rated battery-operated wireless nodes, providing robust and secure messaging

Ezurio's Sentrius™ BT610 I/O Sensor with Bluetooth 5 turns your wired sensors into IP67-rated battery-operated wireless nodes, providing robust and secure messaging. Leveraging our BL654 module, it provides full Bluetooth 5 capabilities, opening up industrial and equipment monitoring applications.

ezurio

Bluetooth

Cellular

Connectivity Management

App Framework

zephyrproject.org/portfolio/sentrius

926 supported boards... and growing

Arduino Portenta
H7

ESP32

Sipeed HiFive1

nRF9160 DK

STM32F746G Disco

M5StickC PLUS

TDK RoboKit 1

BBC micro:bit v2

Blues Swan

Arduino Nano 33
BLE

Intel UP Squared

Dragino LSN50
LoRa Sensor Node

Quicklogic Qomu

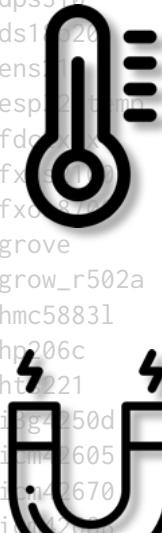
Raspberry Pi Pico

Renesas RX130

NXP i.MX8MP EVK

Adafruit Feather
M0 LoRa

u-blox EVK-NINA-B3



docs.zephyrproject.org/latest/boards/

290+ Sensors Already Integrated

adt7420
adxl345
adxl362
adxl372
ak8975
amg88xx
ams_as5600
ams_iAQcore
apds9960
bma280
bmc150_magn
bme280
bme680
bmg160
bmi160
bmi270
bmm150
bmp388
bq274xx
ccs811

dht
dps310
ds1820
ens124
esp32₀_mp0
fd0010
fxo100
fxo200
grove
grow_r502a
hmc58831
hp206c
ht221
i3g4250d
i2l12605
i3l42670
i4l42055
icp0125
iis2dh
iis2dlpc

iis2iclx
iis2mdc
iis3dhc
ina219
ina231
isl2935
ism35_id₂
ite_tad_it8xxx2
ite_vcmp_it8xxx2
lis2dh
lis2ds12
lis2dw12
lis2m
lis3m
lm75
lm77
lps221
lps22hn
lps25hb
lsm303dlhc_magn

lsm6ds0
lsm6ds1
lsm6ds2
lsm9ds0
lsm9ds1_mfd
max17057
max17262
max30101
max31875
max44009
max6675
mchp_tach_xec
mcp958
mcu1_acmp
mhz100
mpr
mpu6050
mpu9250
ms5607
ms5837

nrf5
nuvoton_adc_cmp_npcx
nuvoton_tcm_hpcx
nxp_kin₂
opt300
pcnt_es₃
pms7003
qdec₂
qdec_nrfx
qdec_sam
qdec_stm32
rpi_pico_temp
sbs_gauge
sgp40
sht3xd
sht4x
shtcx
si7006
si7055
si7060

si7210
sm351lt
stm32_temp
stm32_vbat
stmemsc
stts751
sx9500
th02
ti_hdc
ti_hdc20xx
tmp007
tmp108
tmp112
tmp116
vcnl4040
vl53l0x
wsen_hids
wsen_itds

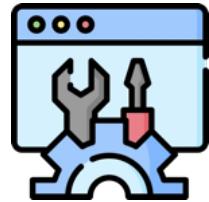
github.com/zephyrproject-rtos/zephyr/tree/main/drivers/sensor

Supported Hardware Architectures

Cortex-M, Cortex-R
& Cortex-A

x86 & x86_64

32 & 64 bit



Xtensa

docs.zephyrproject.org/latest/hardware/index.html#hardware-support

Vibrant Ecosystem

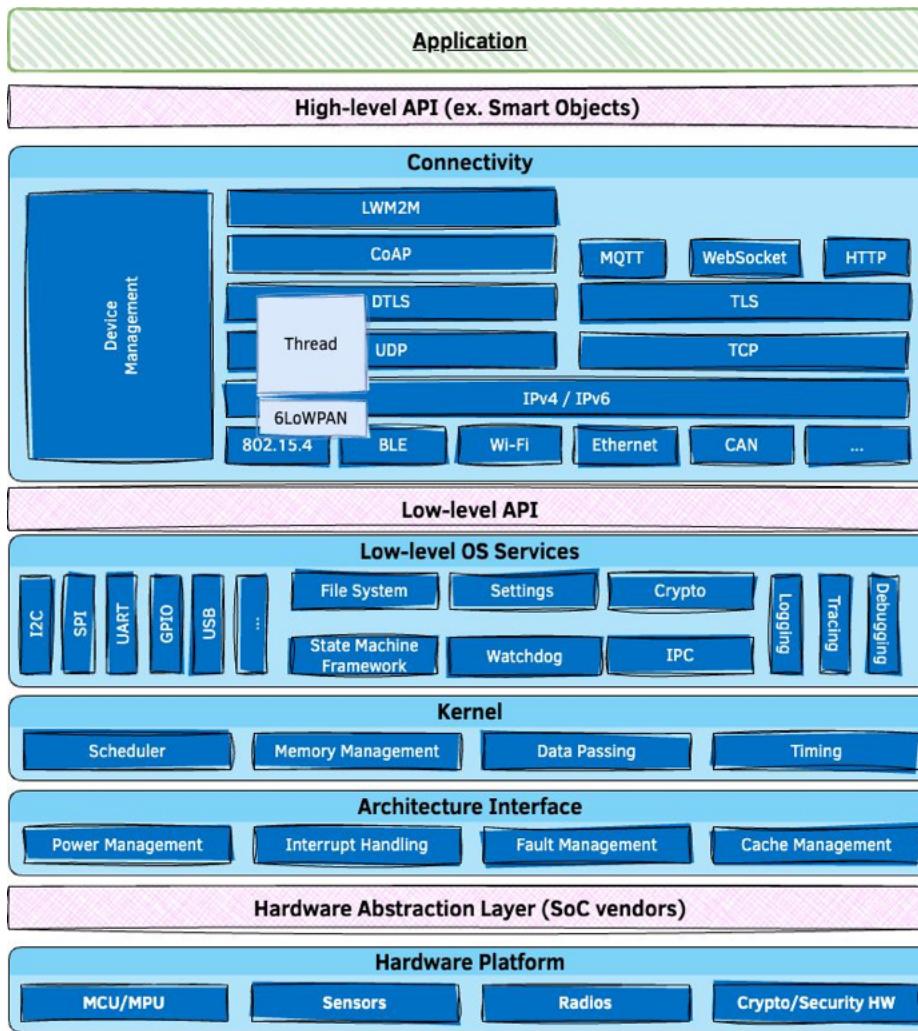
Development Tools

Zephyr®

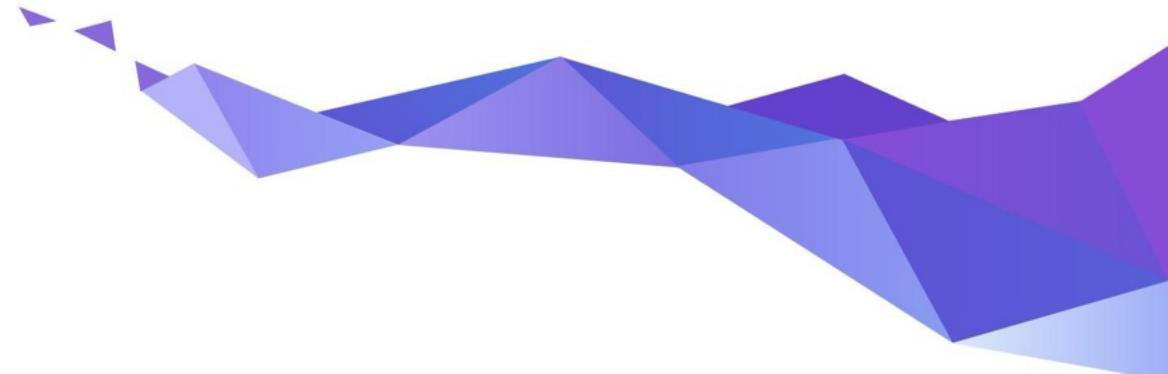
Governing Board

Technical Steering Committee

Applications & Middlewares



Training & Consulting



Firmwares & Libraries

Architecture

Diving into Zephyr's features

Devicetree

Describe & configure the available hardware on the target system

Decouple the application from the hardware

+ **Kconfig** for all things configuration

```
&i2c1 {
    pinctrl-0 = <&i2c1_scl_pb8 &i2c1_sda_pb9>;
    pinctrl-names = "default";
    clock-frequency = <I2C_BITRATE_FAST>;
    status = "okay";

    lsm6dsl@6a {
        compatible = "st,lsm6dsl";
        reg = <0x06a >;
    };
}

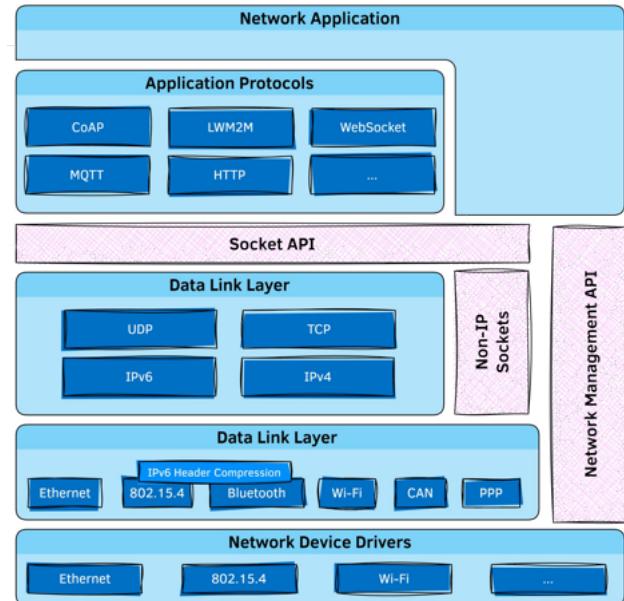
hts221@5f {
    compatible = "st,hts221";
    reg = <0x5f >;
};

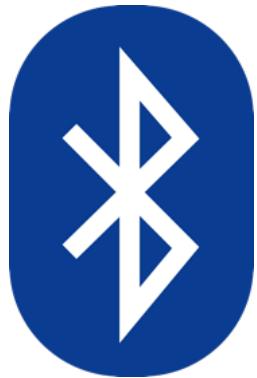
// ...
};
```

.dts file example

docs.zephyrproject.org/latest/build/dts

West meta-tool


- **Module Management**
 - Simplifies Versioning and integration of various modules/libraries in the build system
- **Build**
- **Extensible command-line interface**
 - e.g. custom commands for specific board
 - Static code analysis, RAM/ROM reports


Connectivity Options

- Wide variety of **communication protocols**
 - Ethernet, 802.15.4, Thread, LoRa, Bluetooth, CAN bus, ...
- **Core network protocols** like IPv6, IPv4, UDP, TCP, ICMPv4, and ICMPv6.
- **Security** (ex. TLS, DTLS, ...)
- **Cloud integration** – MQTT (3.1.1, 5), CoAP and HTTP protocols
- **Over-the-air updates**
- **Device management** – OMA LwM2M 1.1 protocol

Native IP Stack

- Built from scratch, on top of Zephyr native kernel concepts
- Dual mode **IPv4/IPv6 stack**
 - DHCP v4, IPv4 autoconf, IPv6 SLAAC, DNS, SNTP
- Multiple network interfaces support
- Time Sensitive Networking support
- **BSD Sockets**-based API
- Supports IP offloading
- **Compliance and security** tested

Bluetooth 5.3 compliant •
LE Controller • Host • Mesh •
Bluetooth-SIG qualifiable

USB 2.0 • USB-C •
Device & Host • WebUSB

Zephyr USB Device Stack

- **USB 2.0 & USB-C** support
- Supports multiple MCU families (STM32, Kinetis, nRF, SAM,...)
- Supports most common devices classes: CDC, Mass Storage, HID, Bluetooth HCI over USB, DFU, USB Audio, etc.
- Tight integration with the RTOS
- Native execution support for emulated development on Linux
- WebUSB support

Power Management

- **Goal:** reduce power consumption while preserving responsiveness
- **Key concepts**
 - **Tickless kernel**
 - System PM: idle thread, interruptions only for registered events
 - Device PM: device drivers can react to PM state changes
- Handled by the kernel / Customizable by the user
- Automated testing using Twister Power Harness

Devicetree

Describe & configure the available hardware on the target system

Decouple the application from the hardware

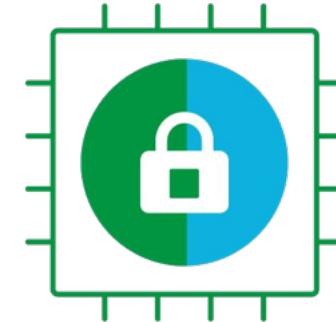
```
&i2c1 {
    pinctrl-0 = <&i2c1_scl_pb8 &i2c1_sda_pb9>;
    pinctrl-names = "default";
    clock-frequency = <I2C_BITRATE_FAST>;
    status = "okay";

    lsm6dsl@6a {
        compatible = "st,lsm6dsl";
        reg = <0x06a >;
    };
}

hts221@5f {
    compatible = "st,hts221";
    reg = <0x5f >;
};

// ...
};
```

.dts file example


docs.zephyrproject.org/latest/build/dts

Secure boot / Device Management

- Leverage **MCUboot** as secure bootloader
- Application binary can be signed/encrypted
 - Can use hardware keys
- But also:
 - Downgrade prevention
 - Dependency checks
 - Reset and failure recovery
- Over-the-air (OTA) upgrades
 - OMA LwM2M, Eclipse hawkBit
 - Vendor offerings

Hardware security

- **Cryptography APIs**
 - Random Number Generation, ciphering, etc.
 - Supported by crypto HW, or SW implementation (TinyCrypt)
- **Trusted Firmware** integration
 - Firmware verification/encryption
 - Device attestation
 - Management of device secrets

Building on POSIX

- **Zephyr apps can run as native Linux applications**
 - Easier to debug/profile with native tools
 - Connect to real devices using TCP/IP, Bluetooth, CAN
 - Helps minimize hardware dependencies during the development phase
- **Re-use existing code & libraries by accessing Zephyr services through POSIX API**
 - Easier for non-embedded programmers
 - Implementation is optimized for constrained systems
 - Supported POSIX subsets: PSE51, PSE52, and BSD sockets

docs.zephyrproject.org/latest/guides/portability posix.html

A real-time OS

Benchmark on Arm Cortex-M4F running at 120 MHz

Operation	Time
Thread create	2.5 µs
Thread start	3.6 µs
Thread suspend	3.3 µs
Thread resume	3.8 µs
Context switch (yield)	2.2 µs
Get semaphore	0.6 µs
Put semaphore	1.1 µs

github.com/zephyrproject-rtos/zephyr/tree/main/tests/benchmarks

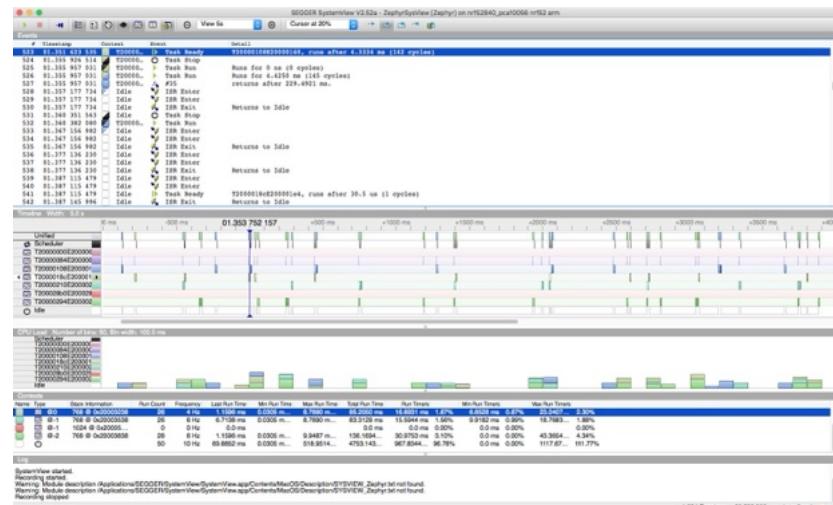
Graphical User Interfaces

- Drivers available for various types of displays
 - LCD
 - OLED
 - Touch panel displays
 - E-ink
 - LED matrix displays
- Native LVGL integration
- Support for video capture and output

Inter-Process Communication

- **Built-in kernel services** (see table)
- **IPC service**
 - 1-to-1 or 1-to-many communications
 - No-copy API
- **zbus** (Zephyr Message Bus)
 - 1-to-1, 1-to-many, or many-to-many channel-based communications
 - Synchronous or asynchronous

Object	Bidirectional?	Data structure
FIFO	✗	Queue
LIFO	✗	Queue
Stack	✗	Array
Message queue	✗	Ring buffer
Mailbox	✓	Queue
Pipe	✗	Ring buffer


Data passing objects available in Zephyr kernel

A typical zbus application architecture

Tracing & Debugging

- Advanced **logging** framework
 - Multiple backends (UART, network, file system, ...)
 - Compile-time & runtime filtering
- **Tracing** framework
 - Visualize the inner-working of the kernel and its various subsystems
 - Object tracking (mutexes, timers, etc.)

Zephyr 4.3 (Nov. 2025) – What's new?

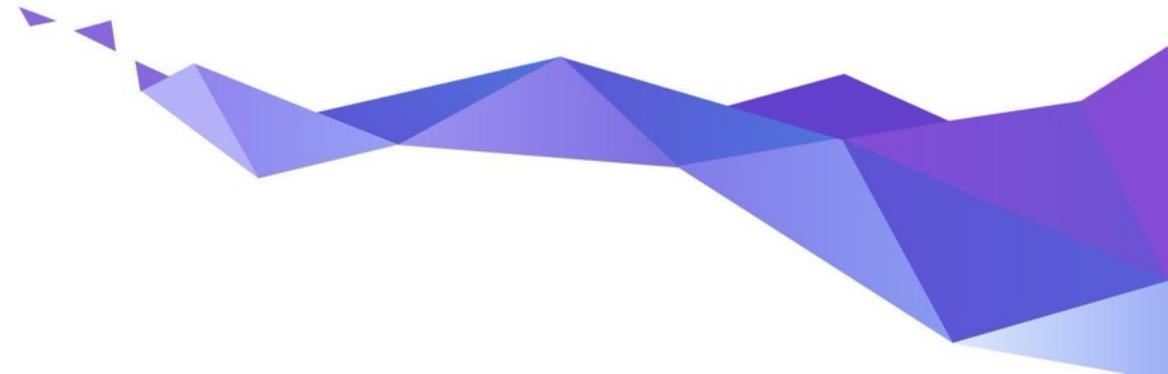
- **CPU load monitoring & dynamic frequency scaling**
- **Instrumentation subsystem**
- **OCPP 1.6 support**
- **Twister display harness** for automated testing of displays/GUIs
- **Developer Experience improvements** – New tools to help with debugging/troubleshooting ([DT doctor](#), [traceconfig](#))

Zephyr 3.7 LTS (July 2024) – What's new?

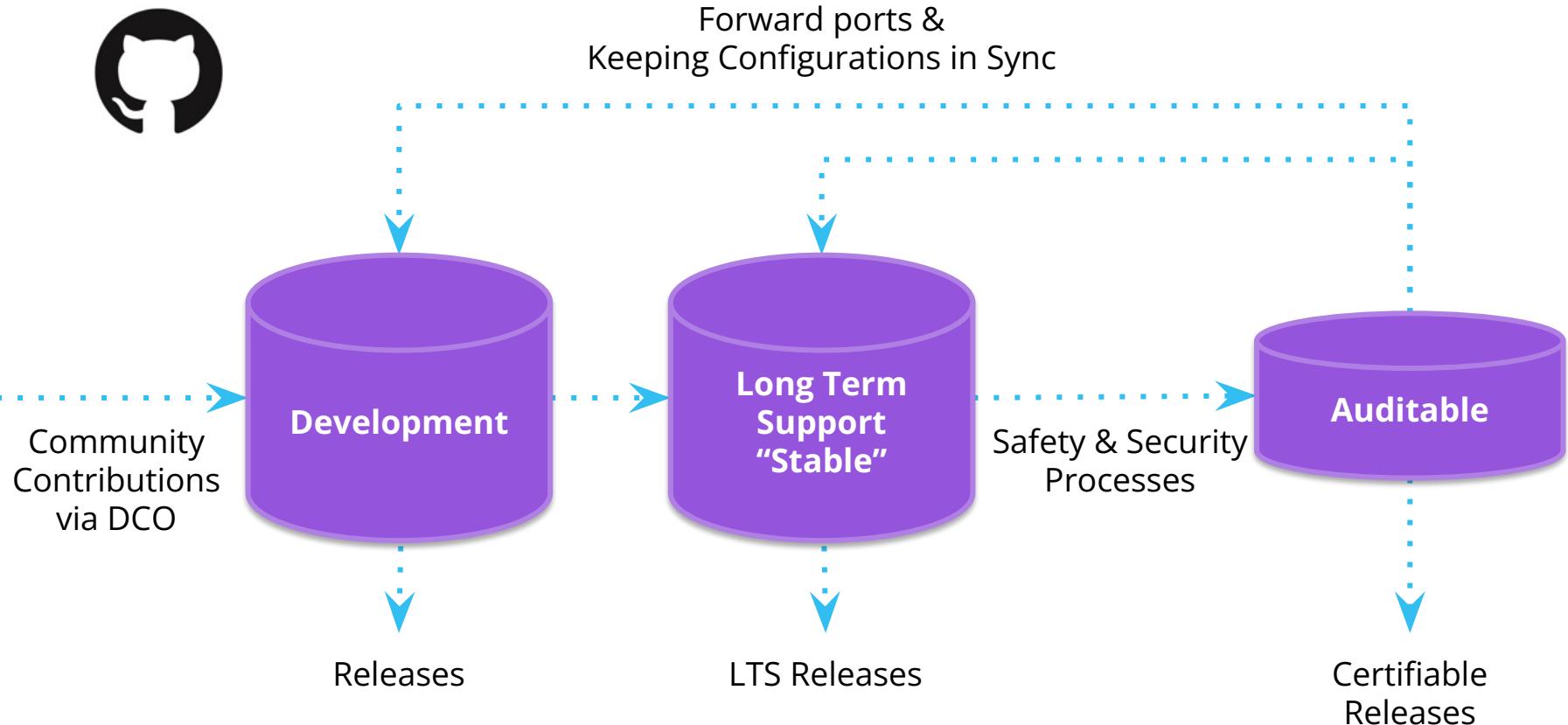
New Hardware Model

 Integration of **TF-M PSA Crypto API**

 Support for **Precision Time Protocol (PTP)**


 HTTP server library

 SBOM generation supports **SPDX 2.3 & PURL/CPE**


 LLEXT Extension Development Kit

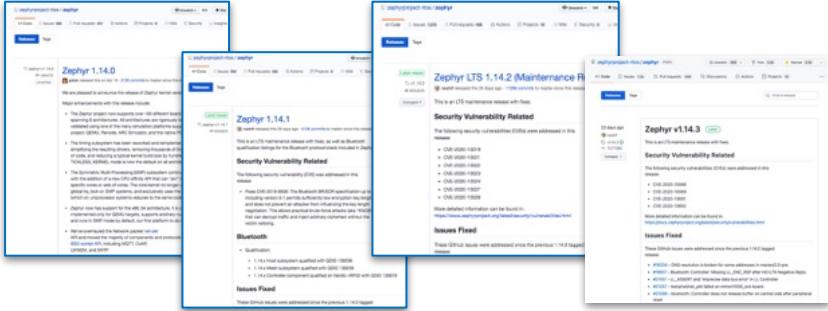
and more, see [Release notes 3.7.](#)

Safety & Security

Code Repositories

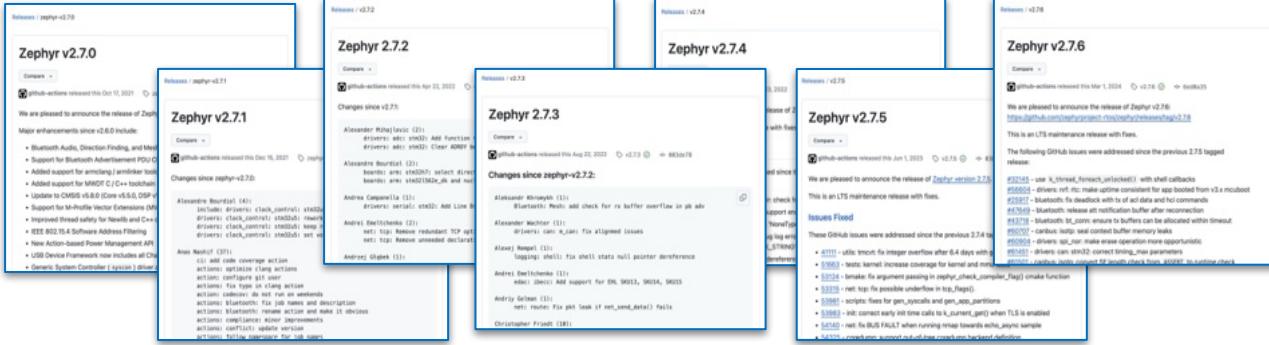
Long Term Support (Zephyr 3.7.x)

- **Product Focused**
- Current with latest **Security Updates**
- **Tested:** Shorten the development window and extend the Beta cycle to allow for more testing and bug fixing
- **Supported for 5 years**
- **⚠ Doesn't include cutting-edge functionality**



github.com/zephyrproject-rtos/zephyr/releases/tag/zephyr-v3.7.0

Long Term Support (LTS 1 & LTS 2)


LTS 1

Apr '19 → Nov '21

LTS 2

Oct '21 → Mar '24

Delivered bug fixes and latest security updates for 2+ years!

Auditable

- An **auditable code base** will be established from a **subset of the Zephyr OS LTS**
- Code bases will be kept in sync
- More rigorous processes (necessary for certification) will be applied to the auditable code base.
- Processes to achieve selected certification to be:
 - Determined by Safety Committee and Security Committee
 - Coordinated with Technical Steering Committee

Project Security Documentation

- Project Security Overview
- Started with documents from other projects
- Built around Secure Development, Secure Design, and Security Certification
- Ongoing process, rather than something to just be accomplished

Docs / Latest » Security » Zephyr Security Overview
[Open on GitHub](#) [Report an issue with this page](#)

This is the documentation for the latest (main) development branch of Zephyr. If you are looking for the documentation of previous releases, use the drop-down menu on the left and select the desired version.

Zephyr Security Overview

Introduction

This document outlines the steps of the Zephyr Security Subcommittee towards a defined security process that helps developers build more secure software while addressing security compliance requirements. It presents the key ideas of the security process and outlines which documents need to be created. After the process is implemented and all supporting documents are created, this document is a top-level overview and entry point.

Overview and Scope

We begin with an overview of the Zephyr development process, which mainly focuses on security functionality.

In subsequent sections, the individual parts of the process are treated in detail. As depicted in Figure 1, these main steps are:

1. **Secure Development:** Defines the system architecture and development process that ensures adherence to relevant coding principles and quality assurance procedures.
2. **Secure Design:** Defines security procedures and implement measures to enforce them. A security architecture of the system and relevant sub-modules are created, threats are identified, and countermeasures designed. Their

Software Supply Chain

- Zephyr ships an **SBOM** (Software Bill of Materials) with each release
- Downstream consumers can leverage built-in tools to, in turn, generate source & build SBOMs for their deliverables

```
[...]
FileName: ./zephyr/zephyr.elf
SPDXID: SPDXRef-File-zephyr.elf
FileChecksum: SHA1: e74cebcac51dabd799957ac51e4edcd32541103d
[...]
Relationship: SPDXRef-File-zephyr.elf GENERATED_FROM SPDXRef-File-dev-handles.c
Relationship: SPDXRef-File-zephyr.elf GENERATED_FROM SPDXRef-File-isr-tables.c
Relationship: SPDXRef-File-zephyr.elf STATIC_LINK SPDXRef-File-libapp.a
Relationship: SPDXRef-File-zephyr.elf STATIC_LINK SPDXRef-File-libzephyr.a
Relationship: SPDXRef-File-zephyr.elf STATIC_LINK SPDXRef-File-libisr-tables.a
Relationship: SPDXRef-File-zephyr.elf STATIC_LINK SPDXRef-File-libkernel.a
[...]
```

Automating SBOM Generation During Build!

1. Create a build directory with CMake file API enabled
2. Build project with “build metadata” enabled
3. Compute SBOM(s)

```
west SPDX --init -d BUILD_DIR
```

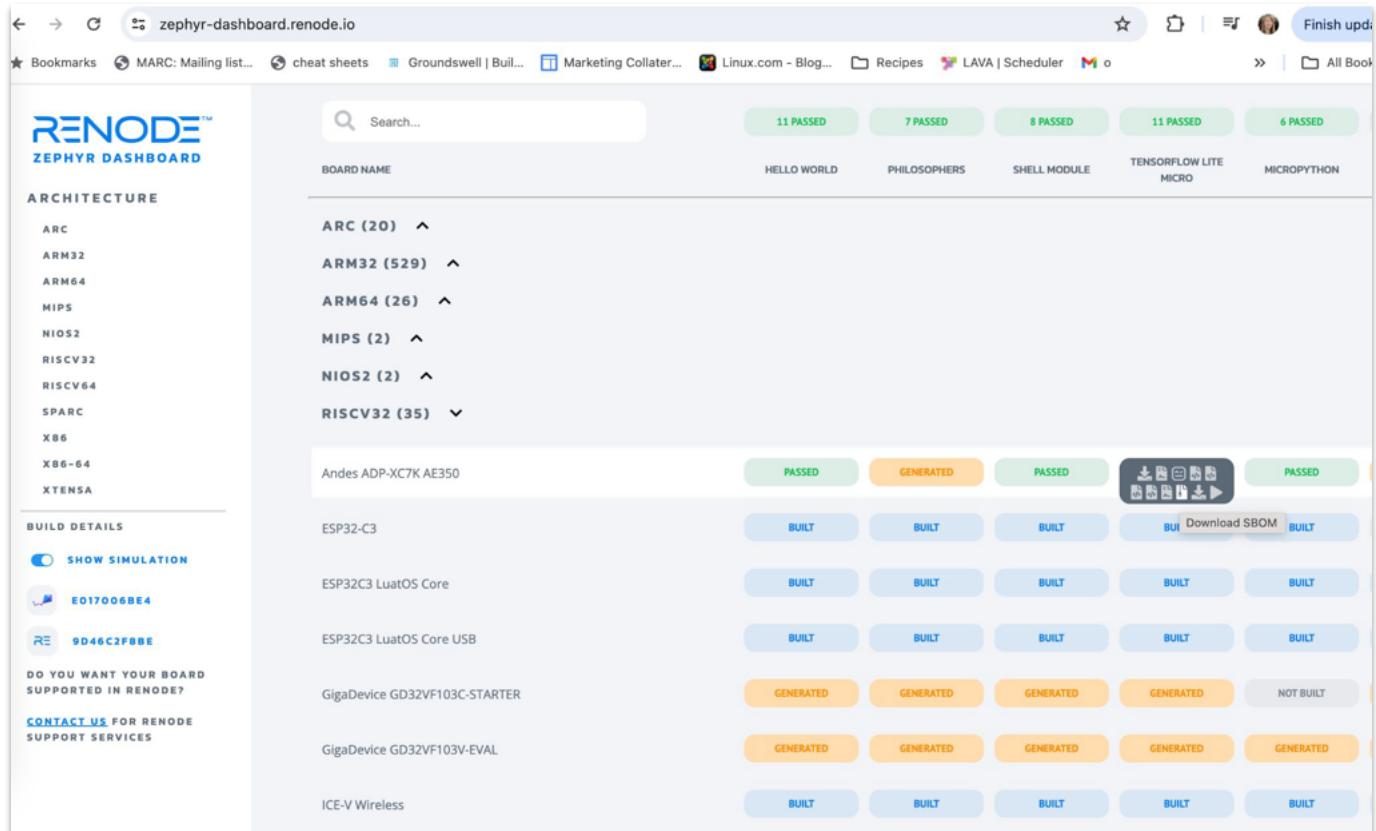
```
west build -d BUILD_DIR -- -DCONFIG_BUILD_OUTPUT_META=y
```

```
west SPDX -d BUILD_DIR
```


`zephyr.spdx` SBOM for the **Zephyr source files** actually used by your application

`modules.spdx` SBOM for the modules being used

`app.spdx` SBOM for the source files of your **application**


`build.spdx` SBOM for **all the build objects**, inc. of course your final image

SBOMs at Scale...Automatically

708 boards

13 apps

**All BUILT,
PASSED,
GENERATED
have 3 SBOMs
available to
download &
inspect**

RENODE™ ZEPHYR DASHBOARD

ARCHITECTURE

- ARC
- ARM32
- ARM64
- MIPS
- NIOS2
- RISCV32
- RISCV64
- SPARC
- X86
- X86-64
- XTENSA

BUILD DETAILS

- SHOW SIMULATION
- ED17006BE4
- 9D46C2F8BE

DO YOU WANT YOUR BOARD SUPPORTED IN RENODE?

[CONTACT US](#) FOR RENODE SUPPORT SERVICES

BOARD NAME	HELLO WORLD	PHILOSOPHERS	SHELL MODULE	TENSORFLOW LITE MICRO	MICROPYTHON
ARC (20) ^	11 PASSED	7 PASSED	8 PASSED	11 PASSED	6 PASSED
ARM32 (529) ^					
ARM64 (26) ^					
MIPS (2) ^					
NIOS2 (2) ^					
RISCV32 (35) ▾					
Andes ADP-XC7K AE350	PASSED	GENERATED	PASSED	Download SBOM	PASSED
ESP32-C3	BUILT	BUILT	BUILT	Download SBOM	BUILT
ESP32C3 LuatOS Core	BUILT	BUILT	BUILT	Download SBOM	BUILT
ESP32C3 LuatOS Core USB	BUILT	BUILT	BUILT	Download SBOM	BUILT
GigaDevice GD32VF103C-STARTER	GENERATED	GENERATED	GENERATED	GENERATED	NOT BUILT
GigaDevice GD32VF103V-EVAL	GENERATED	GENERATED	GENERATED	GENERATED	GENERATED
ICE-V Wireless	BUILT	BUILT	BUILT	Download SBOM	BUILT

Source: <https://zephyr-dashboard.renode.io/>

CVE Numbering Authority


- **Registered with MITRE**

in 2017

- Zephyr triages and issue our own CVEs

- **Zephyr Project Security Incident Response Team (PSIRT)**

- Volunteers from the Security Committee
- Led by the Zephyr Security Architect.

Zephyr Project

Links that redirect to external websites will open a new window or tab depending on the web browser used.

Steps to Report a Vulnerability or Request a CVE ID

Step 1: Read disclosure policy	Step 2: Contact
View Policy	Email

Scope	Zephyr project components, and vulnerabilities that are not in another CNA's scope.
Program Role	CNA
Top-Level Root	MITRE Corporation
Security Advisories	View Advisories
Organization Type	Vendor Open Source
Country*	USA

* Self-identified by CNA

OpenSSF Gold Badge

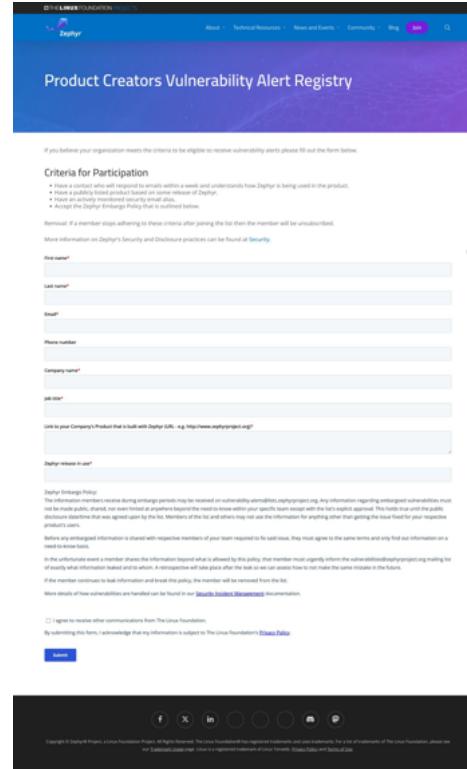
- Core Infrastructure Initiative
Best Practices Program
- Awards badges based on
“project commitment to
security”
- Mostly about project
infrastructure: is project
hosting, etc following security
practices
- Gold status since Feb, 2019

Zephyr Project

[Expand panels](#) [Show all details](#) [Hide met & N/A](#)

Projects that follow the best practices below can voluntarily self-certify and show that they've achieved an Open Source Security Foundation (OpenSSF) best practices badge. [Show details](#)

If this is your project, please show your badge status on your project page! The badge status looks like this: `openssf best practices gold` Here is how to embed it: [Show details](#)


These are the `passing` level criteria. You can also view the `silver` or `gold` level criteria.

▼ Basics	13/13	•
▼ Change Control	9/9	•
▼ Reporting	8/8	•
▼ Quality	13/13	•
▼ Security	16/16	•
▼ Analysis	8/8	•

Vulnerability Alert Registry

- For an **embargo** to be effective, product makers need to be **notified early** so they can **remediate**
- The project aims at **fixing issues within 30 days** to give **vendors 60 days** before publication of vulnerability

A screenshot of a web form titled "Product Creators Vulnerability Alert Registry". The form is part of the Zephyr Project website, as indicated by the header. It includes fields for company information, a list of Zephyr releases, and a disclosure statement. At the bottom, there is a checkbox for accepting the "Privacy Policy" and a "Submit" button. The footer of the page contains social media links and a copyright notice.

zephyrproject.org/vulnerability-registry

Zephyr PSIRT: Remediation and Response

Advisory Issued by project on 20201208:

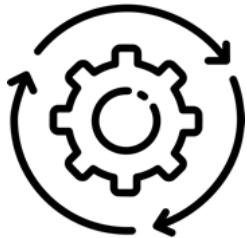

- Zephyr current release (2.4) does not use Fnet or other stacks.
- The Zephyr LTS release 1.14 contains an implementation of the TCP stack from Fnet.

Of the vulnerabilities reported in Fnet, 2, [CVE-2020-17468](#), and [CVE-2020-17469](#), are in the IPv6 Fnet code, one, [CVE-2020-17467](#), affects Link-local Multicast Name Resolution LLMNR), and 2, [CVE-2020-24383](#), and [CVE-2020-17470](#) affect DNS functionality.

None of the affected code has been used in the Zephyr project, while 1.14 does use the Fnet TCP, it does not use the affected IPv6, DNS or LLMNR code.

zephyrproject.org/zephyr-security-update-on-amnesia33

ForeScout Research Labs has launched *Project Memoria*, an initiative that aims at providing the community with the largest study on the security of TCP/IP stacks. Project Memoria's goal is to develop the understanding of common bugs behind the vulnerabilities in TCP/IP stacks, identifying the threats they pose to the extended enterprise and how to mitigate those.

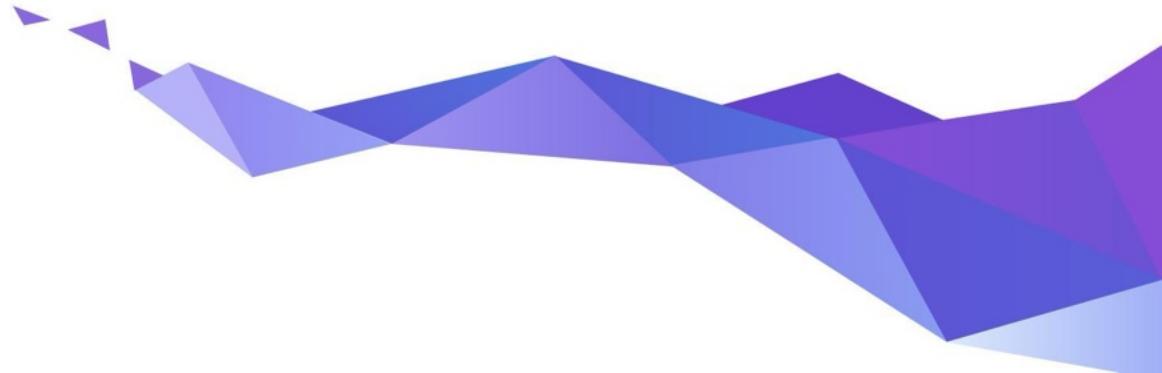

AMNESIA:33 is the first study we have published under Project Memoria. In this study, we discuss the results of the security analysis of seven open source TCP/IP stacks and report a bundle of 33 new vulnerabilities found in four of the seven analyzed stacks that are used by major IoT, OT and IT device vendors.

Four of the vulnerabilities in AMNESIA:33 are critical, with potential for remote code execution on certain devices. Exploiting these vulnerabilities could allow an attacker to take control of a device, thus using it as an entry point on a network. One of the critical vulnerabilities found can be used as a pivot point for lateral movement, as a persistence point on the target network, or as the final target of an attack. For enterprise organizations, this means they are at increased risk of having their network compromised or having malicious actors undermine their business continuity. For consumers, this means that their IoT devices may be used as part of large attack campaigns, such as botnets, without them being aware.

150+
VENDORS AFFECTED

forescout.com/amnesia33/ research@forescout.com <tel:1-866-377-8771>

Zephyr Security Summary

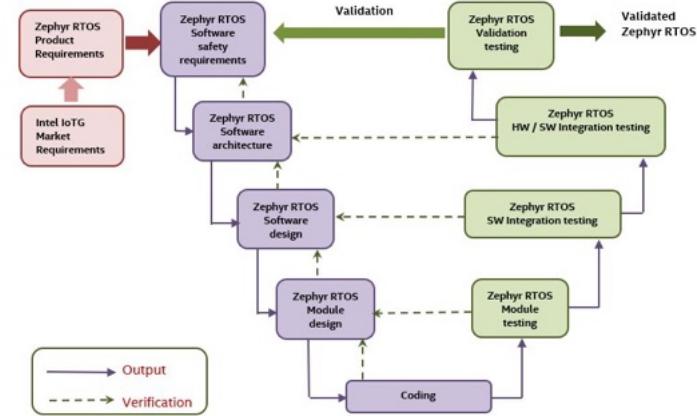


Weekly Coverity scans
MISRA scans
Automated Code checks
per pull request

Documented secure
coding practices
Vulnerability response
criteria publicly
documented

SBOM generation per
ISO/IEC 5962:2021

Certification



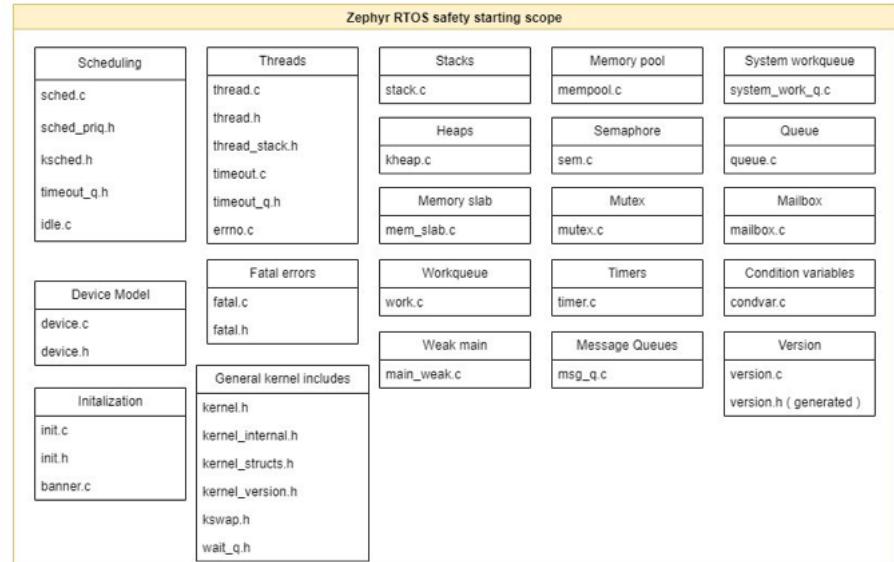
Compliant Development: V-model

It is difficult to map a stereotypical open-source development to the V-model

- Specification of features
- Comprehensive documentation
- Traceability from requirements to source code
- Number of committers and information known about them

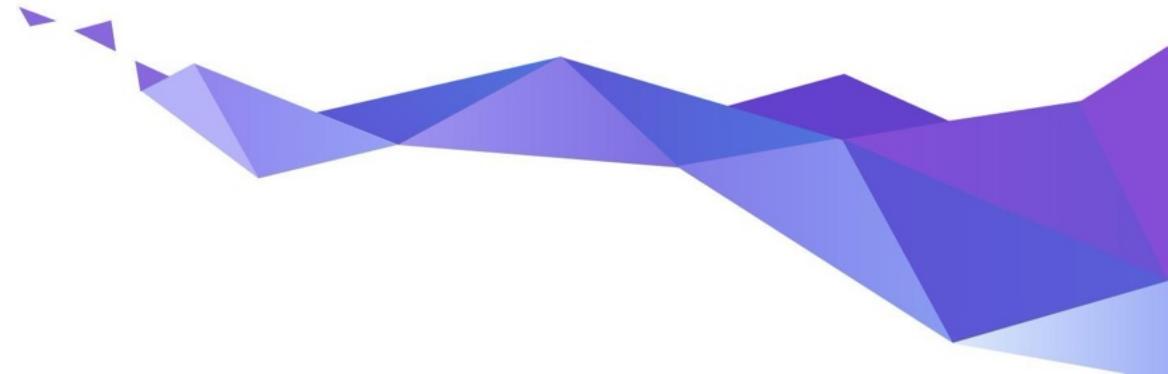
Zephyr RTOS functional safety work products mapping to IEC 61508-3 V model

⇒ Provide the evidences that open source developers can map to compliance and meet all requirements


Safety Collateral Proposal

Draft (Pending Approval by Certification Authority)			
Artifacts	Type of Doc	Owner	Work in progress Visibility
Plans			
Safety Development Plan	Plan/Process	Safety Committee	Public - Project Docs
Safety Assessment Plan	Plan/Process	FSM	Safety Committee Github
Verification / Validation / Integration Test Plan	Plan/Process	Testing WG	Public - Project Docs
Software Development Plan	Plan/Process	TSC	Public - Project Docs
Configuration and Change Management Plan	Plan/Process	TSC	Public - Project Docs
Coding Guideline	Plan/Process	TSC	Public - Project Docs
Tools Documentation	Plan/Process	TSC	Public - Project Docs
Specifications			
Safety Scope Definition	Category		
Safety Software Requirement Specification (SRS) **	Spec.	Safety Committee	Safety Committee Github
Safety Software Architecture and Interface Specification (SAIS) **	Spec.	Safety Committee	Safety Committee Github
Safety Software Component Design Specification (SMDS) **	Spec.	Safety Committee	Safety Committee Github
Safety Software Component Test Specification (SMTS) **	Spec.	Safety Committee	Safety Committee Github
Safety Software Integration Test Specification (SITS) **	Spec.	Safety Committee	Safety Committee Github
Safety Software Test Specification (STS) **	Spec.	Safety Committee	Safety Committee Github
Sources			
Source Code	Category		
- Coding Guideline Compliance	Source	TSC	Public
Project Documentaton	Source	TSC	Public
- Software Requirement Specifications	Spec	TSC	Public
- Software Architecture and Interface Specification	Spec	TSC	Public
- Software Component Design Specification	Spec	TSC	Public
Project Testing	Category		
- Software Component/Unit Test Specification	Source	TSC	Public
- Software Integration Test Specification	Spec	TSC	Public
- Software Test Specification	Spec	TSC	Public
- Tests	Source	TSC	Public
Reports			
Code Review Report (pre-merge)	Category		
Code Change Test Report (post-merge)	Report	TSC	Public
Test Coverage Report	Report	Testing WG	Public
Coding Guideline Compliance Report	Report	Testing WG	Public
Traceability Report	Report	Safety WG & Security WG	Public
Tools Classification	Report	Safety WG	Public
Tools Validation	Report	Safety Committee	Public
Fault Injection Test Report	Report	Safety Committee	TBD (based on specific tools)
Safety Traceability Report (for Safety Scope) **	Report	Safety Committee/FSM	Safety Committee
Safety Test Coverage Report (for Safety Scope) **	Report	Safety Committee/FSM	Safety Committee
Safety Analysis (e.g. FMEA)	Report	FSM	Safety Committee
Manuals			
Software User Manual	Category		
Safety Manual	Manual	TSC	Public
Certificates			
All safety certificates	Certificate	Safety Committee	N/A

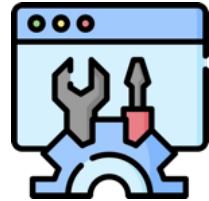
- Requirement definition, Source Code & Test linkage are public; and developed in open using [strictdoc](#)
- The set of requirements (and associated traceability) that are applicable to safety scope is managed by the safety committee.
- Other project artifacts have owners designated.


Initial certification focus

- Start with a limited scope of kernel and interfaces
- Initial target is IEC 61508 SIL 3 / SC 3 (IEC 61508-3, 7.4.2.12, Route 3s)
- Option for 26262 certification has been included in contract with certification authority should there be sufficient member interest

Scope can be **extended** to include **additional components** with associated **requirements** and **traceability** as determined by the safety committee

Ecosystem & Governance


Zephyr Project: Platinum Members

Zephyr Project: Silver Members

Vibrant Ecosystem

Development Tools

Zephyr®

Governing Board

Technical Steering Committee

Applications & Middlewares

Contributors

Training & Consulting

Firmwares & Libraries

Ecosystem // Developer Tools

IDE

Compilers

Debuggers / Tracing Tools

Emulation / Simulation

Ecosystem // Training & Consulting

Development Tools

Training & Consulting

Firmwares & Libraries

Applications & Middlewares

Training

AC6

Golioth

NORDIC SEMICONDUCTOR

BENINGO EMBEDDED GROUP

Savoir-faire LINUX

THE LINUX FOUNDATION

Services & Consulting

ANALOG DEVICES

avsystem

Baylibre

ezurio

inovex

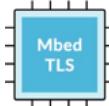
NXP

WNDRVR

Ecosystem // Firmwares & Libraries

Development Tools

Training & Consulting



Firmwares & Libraries

Applications & Middlewares

Security

Language runtimes

TinyML

TensorFlow Lite

Others

Ecosystem // Apps & Middlewares

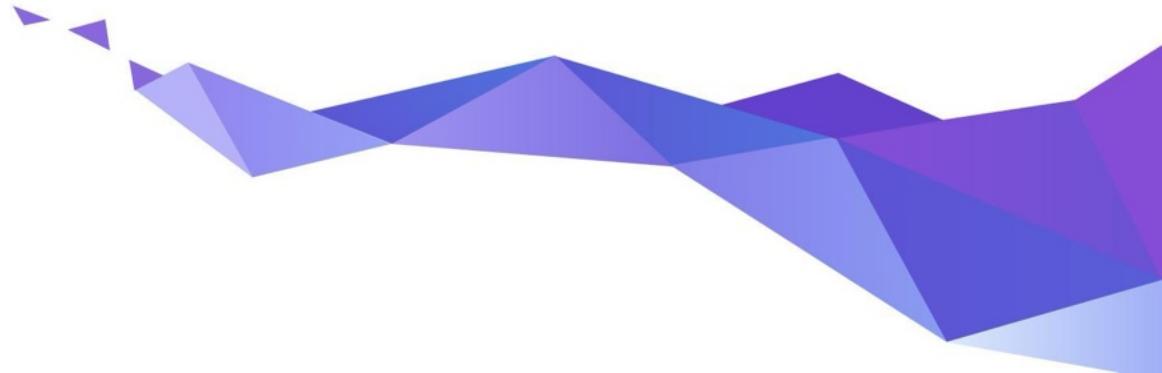
Development Tools

Training & Consulting

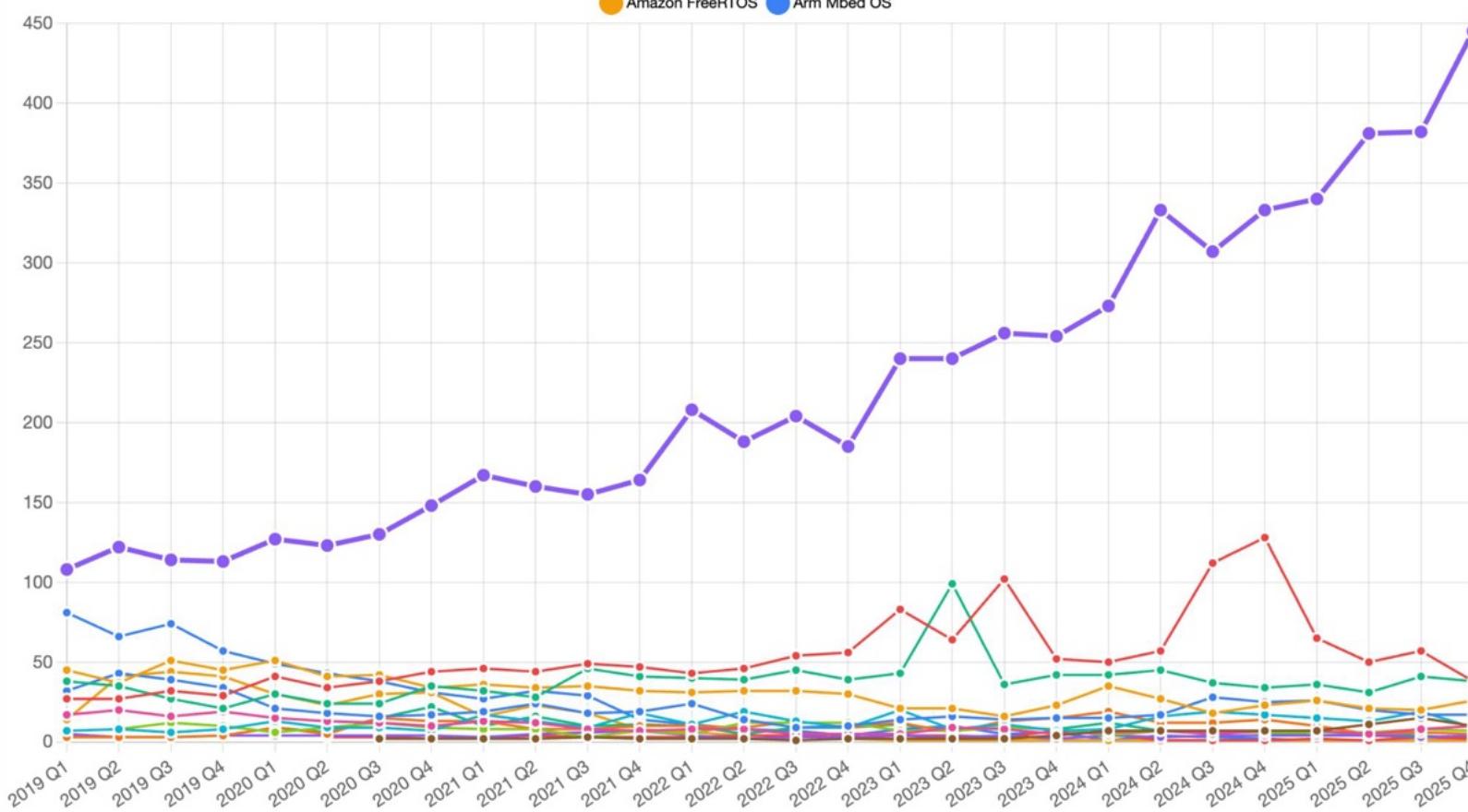
Firmwares & Libraries

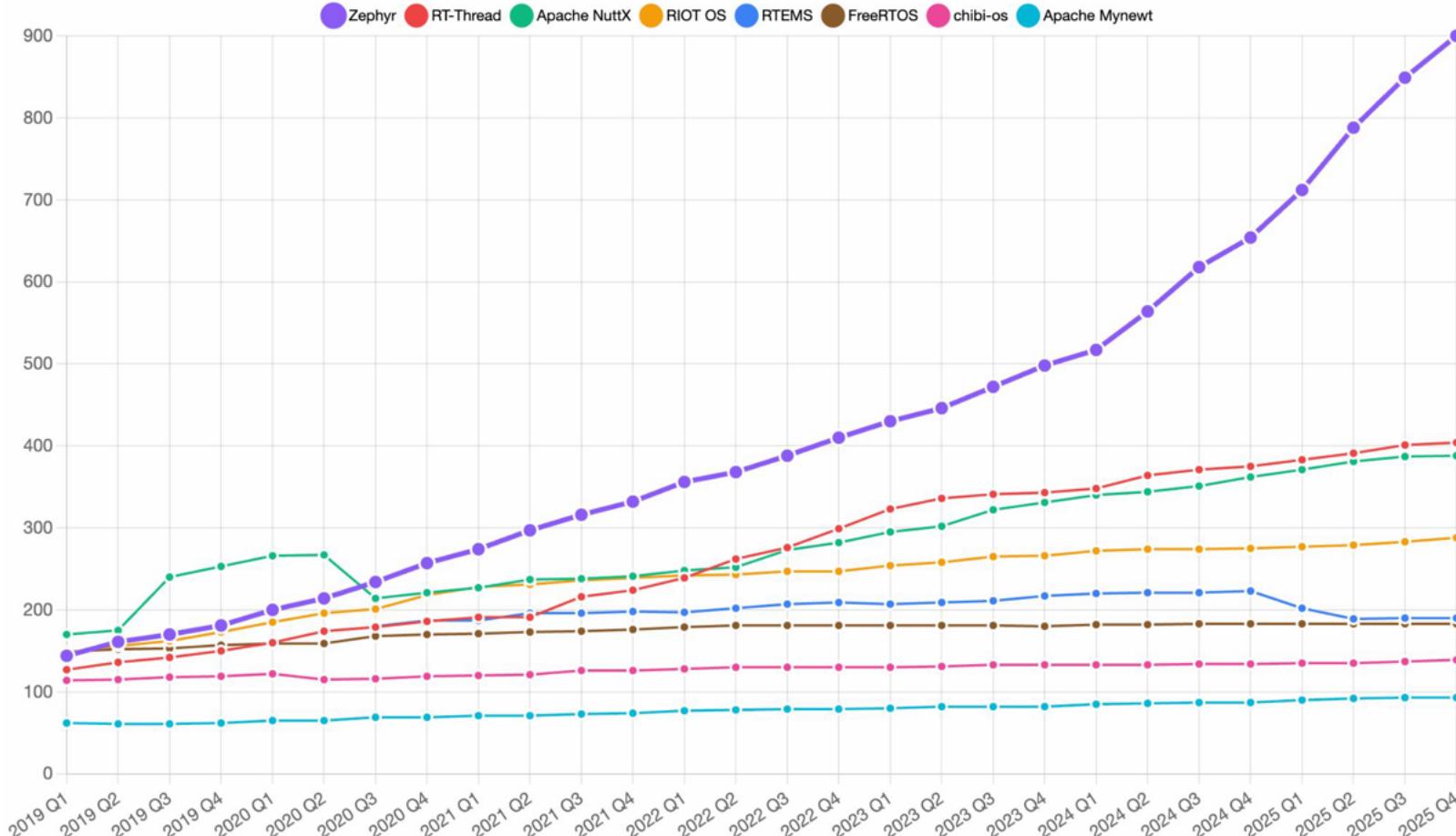
Applications & Middlewares

Remote Management

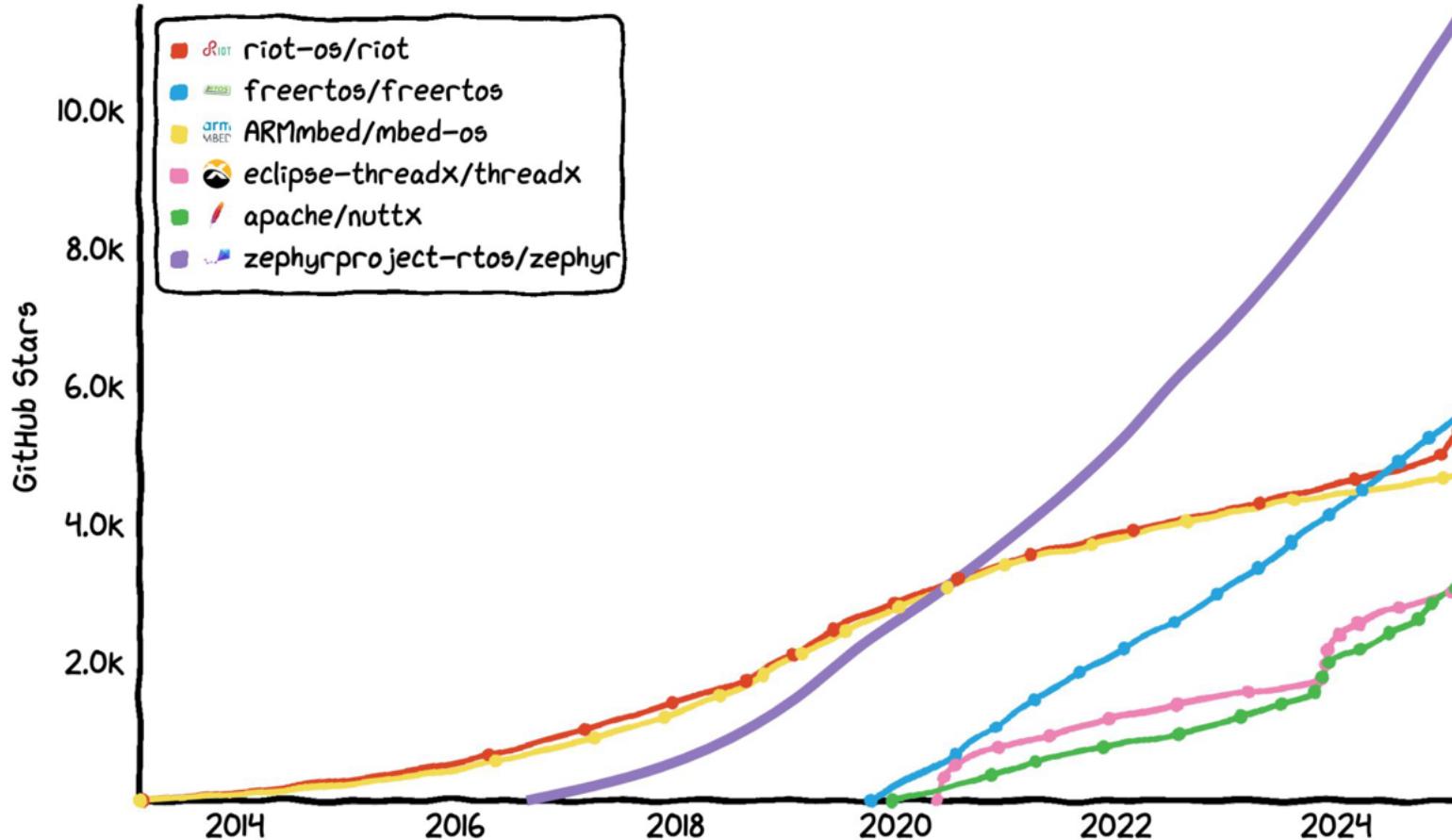

Graphical Interfaces

Robotics


Zephyr in the RTOS landscape


Unique Contributors per Month

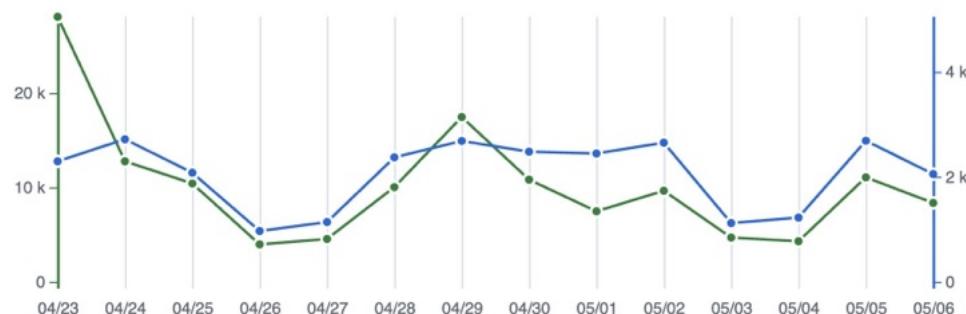
Zephyr Project Contributors (Unique Contributors per Month)



Supported Boards

Note: Only the operating systems for which number of supported boards could be easily computed automatically are included on this chart.

Star History


GitHub Clones & Unique Visitors

242,963 Views

21,460 Unique visitors

Git clones

2025-04-23 → 2025-05-06

~1183 unique clones per day
~1532 unique visitors per day

143,575 Clones

16,571 Unique cloners

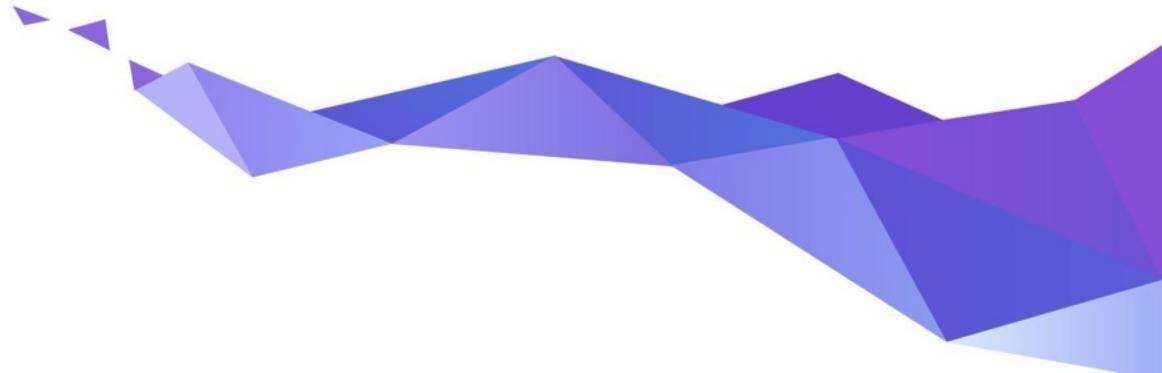
Getting started – Important links

- Check out the official [Getting Started Guide](#)
- Dig into the hundreds of **code samples**
- Check the catalog of 100s of available Devicetree bindings
 - No driver for your HW? Chances are a similar driver already exists and writing one is not as hard or daunting as you would think!
- Reach out to the community on **Discord**

Zephyr Participation Information

zephyrproject.org

github.com/zephyrproject-rtos


lists.zephyrproject.org

chat.zephyrproject.org

zephyrproject.org

