
User ModePage - 0 Zephyr

Zephyr Meetup

User Mode in Zephyr:

Explained in Simple Words



User ModePage - 1 Zephyr

Agenda User mode

◼ Overview

Memory Domains

Syscalls



User ModePage - 2 Zephyr

Introduction to User Mode

◼ Keeping applications safe and reliable

❑ Enforcing memory access permissions

❑ Restricting the execution of privileged instructions.

◼ Definitions:

❑ User Mode:

➢ Execution context where threads run with limited privileges (restrictions)

❑ Kernel Mode:

➢ Unrestricted access.

◼ Zephyr brings convenience and simplicity to handling user threads.

❑ This is a big deal !



User ModePage - 3 Zephyr

Key Features of User Mode

◼ Limited Access:

❑ Access restricted to essential system resources to prevent unintended system 

alterations.

◼ Isolation:

❑ Individual isolation of user mode threads to safeguard against faults and 

compromises in other threads.

◼ Security:

❑ Requirement for explicit permissions for higher-privilege operations, enhancing 

overall system security.



User ModePage - 4 Zephyr

User Mode in Zephyr

◼ Depends on either MPU (Memory Protection Unit) or MMU (Memory 

Management Unit) based on system architecture.

◼ Two main features:

❑ Memory domains for managing different application permissions to memory.

❑ Syscalls for performing operations, like kernel objects (e.g mutex) or device drivers

◼ User mode restricts access to essential resources

❑ It requires explicit permissions to interact with hardware or memory outside its 

allocated range



User ModePage - 5 Zephyr

Agenda User mode

Overview

◼ Memory Domains

Syscalls



User ModePage - 6 Zephyr

User mode application structure

◼ The term "app" refers to your project that contains all the code you're 

working on, part of the build system.

◼ User mode allows the creation of multiple "logical apps".

❑ Collections of user space threads grouped under the same memory domain.

◼ Threads in each logical app are isolated from those in another logical app

❑ Preventing them from accessing variables defined in different logical apps

❑ Kernel threads have the ability to access all memory addresses



User ModePage - 7 Zephyr

Memory domains and partitions

◼ Memory domains in Zephyr are designed to control memory access 

from user threads.

◼ Each domain consists of one or more partitions.

❑ A partition is a contiguous memory region where global variables are defined.

❑ The same partition can be specified in multiple memory domains (shared).



User ModePage - 8 Zephyr

Memory Domains

◼ Memory domains are not intended to control access to memory from 

supervisor (kernel) mode.

◼ APIs are accessible only in supervisor mode, not in user mode.

◼ Threads and Memory Domains

❑ All threads, including supervisor threads, are members of a memory domain.

⚫ The default domain, k_mem_domain_default



User ModePage - 9 Zephyr

Memory Partitions in Memory Domains

◼ Partitions are intended to control access to system RAM.

◼ Each partition consists of a memory address, a size, and permission

❑ They must represent regions programmable by MPU/MMU.

❑ Partitions within the same memory domain must not overlap.

❑ The same partition may be specified in multiple memory domains.

◼ Two methods for defining memory partitions:

❑ Manual or automatic; it is usually done automatically



User ModePage - 10 Zephyr

Automatic Memory Partitions

◼ Automatic memory partitions are created by the Zephyr build system.

❑ Globals requiring specific memory partitions are tagged accordingly.

◼ Characteristics of Automatic Memory Partitions:

❑ They are defined using K_APPMEM_PARTITION_DEFINE().

❑ Global variables are directed to the partition using K_APP_DMEM() for initialized 

data and K_APP_BMEM() for BSS

◼ During boot, the system zeroes any BSS variables within the memory block.



User ModePage - 11 Zephyr

Example (1/2)

/* Memory partitions definitions */

K_APPMEM_PARTITION_DEFINE(partition1);

/* Variables in specific memory partitions */

K_APP_DMEM(partition1) int var_1 = 11;

/* Thread functions for application A */

void app_a_threads(void *arg1, void *arg2, void *arg3)

{

printk("App A, Thread %d: can access var_1 = %d and var_shared = %d\n", \

(int) arg1, var_1, var_shared); // OK

printk("App A, Thread %d: cannot access var_2\n", (int) arg1); // fatal

}



User ModePage - 12 Zephyr

Example (2/2)

/* Memory domains declarations */

struct k_mem_domain domain_a;

/* Memory partition configuration arrays */

struct k_mem_partition *app_a_partitions[] = { &partition1, other...};

int main(void)

{

/* Initialize and assign partitions to domains */

k_mem_domain_init(&domain_a, ARRAY_SIZE(app_a_partitions), app_a_partitions);

/* Add app1 threads to domain a */

k_mem_domain_add_thread(&domain_a, tid_app_a1);

}



User ModePage - 13 Zephyr

Automatic Memory Domain build flow



User ModePage - 14 Zephyr

Agenda User mode

Overview

Memory Domains

◼ Syscalls



User ModePage - 15 Zephyr

Kernel objects in a nutshell

◼ Kernel objects are zephyr’s core components

❑ like mutexes, semaphores, and device drivers, among others.

◼ User threads must have explicit permissions to access these objects

❑ This is a crucial aspect of Zephyr’s security model

❑ Permissions are granted on a per-object basis

⚫ Each thread can interact with objects while being restricted from others

◼ Supervisor threads have unrestricted access to any kernel object



User ModePage - 16 Zephyr

The concept

◼ System calls are special functions to interact with the core features.

◼ Each time an application makes a system call, Zephyr checks all the 

information provided to ensure that it is correct and safe.

◼ Zephyr checks whether a system call originates from a user thread or 

a supervisor thread.

❑ User thread: Zephyr verifies whether it has the explicit permission.

⚫ If the permission is granted, the operation proceeds;

⚫ if not, the system call returns an error.

◼ Note:

❑ Granting permissions to kernel objects operates independently from logical 

applications or memory domains.



User ModePage - 17 Zephyr

The concept



User ModePage - 18 Zephyr

Example

/* Define the semaphore (kernel object) */

K_SEM_DEFINE(my_sem, 0, 1);

/* User thread1 entry function */

void user_thread1(void *p1, void *p2, void *p3) {

if (k_sem_take(&my_sem, K_FOREVER) == 0) {

printk("User thread1: Successfully accessed the semaphore.\n");

}

}

/* Fatal error handler */

void k_sys_fatal_error_handler(unsigned int reason, const z_arch_esf_t *esf) {

if(reason == K_ERR_KERNEL_OOPS) {

printk("Kernel OOPS in : %s\n", k_thread_name_get(k_current_get()));

}

}

/* main is a kernel thread */

int main(void) {

k_object_access_grant(&my_sem, user_thread1_id);

}



User ModePage - 19 Zephyr

Test it on FRDM-MCXN947

◼ Install MCUXpresso for Visual Studio Code

◼ Visit our github and clone projects

❑ https://github.com/Ac6Embedded/Zephyr-Examples



User ModePage - 20 Zephyr

Summary User mode

◼ Overview

◼ Memory Domains

◼ Syscalls


	Diapositive 0 User Mode in Zephyr: Explained in Simple Words
	Diapositive 1
	Diapositive 2 Introduction to User Mode
	Diapositive 3 Key Features of User Mode
	Diapositive 4 User Mode in Zephyr
	Diapositive 5
	Diapositive 6 User mode application structure
	Diapositive 7 Memory domains and partitions
	Diapositive 8 Memory Domains
	Diapositive 9 Memory Partitions in Memory Domains
	Diapositive 10 Automatic Memory Partitions
	Diapositive 11 Example (1/2)
	Diapositive 12 Example (2/2)
	Diapositive 13 Automatic Memory Domain build flow
	Diapositive 14
	Diapositive 15 Kernel objects in a nutshell
	Diapositive 16 The concept
	Diapositive 17 The concept
	Diapositive 18 Example
	Diapositive 19 Test it on FRDM-MCXN947
	Diapositive 20

