NXO
Registered

Partner

Zephyr Meetup

User Mode in Zephyr:
Explained in Simple Words

User Mode acs Zephyr

training

Agenda User mode

B Overview
Memory Domains

Syscalls

User Mode a CG Zephyr

training

Introduction to User Mode

B Keeping applications safe and reliable
O Enforcing memory access permissions
[Restricting the execution of privileged instructions.

B Definitions:

O User Mode:
» Execution context where threads run with limited privileges (restrictions)

J Kernel Mode:
» Unrestricted access.

B Zephyr brings convenience and simplicity to handling user threads.
O This is a big deal !

User Mode aCG Zephyr

Page -2 training

Key Features of User Mode

B Limited Access:

[Access restricted to essential system resources to prevent unintended system
alterations.

B |solation:

O Individual isolation of user mode threads to safeguard against faults and
compromises in other threads.

B Security:

L Requirement for explicit permissions for higher-privilege operations, enhancing
overall system security.

User Mode aCG Zephyr

Page -3 training

User Mode in Zephyr

B Depends on either MPU (Memory Protection Unit) or MMU (Memory
Management Unit) based on system architecture.

B Two main features:
[Memory domains for managing different application permissions to memory.
 Syscalls for performing operations, like kernel objects (e.g mutex) or device drivers

B User mode restricts access to essential resources

O It requires explicit permissions to interact with hardware or memory outside its
allocated range

Page - 4 User Mode aCG Zephyr

training

Agenda User mode

Overview
B Memory Domains

Syscalls

User Mode a CG Zephyr

training

User mode application structure

B Theterm "app" refers to your project that contains all the code you're
working on, part of the build system.

B User mode allows the creation of multiple "logical apps".
O Collections of user space threads grouped under the same memory domain.

Zephyr application

(AppA]E(AppB)E(AppN) User Mode

(Kernelthreads) KernelMode

B Threads in each logical app are isolated from those in another logical app
O Preventing them from accessing variables defined in different logical apps
O Kernel threads have the ability to access all memory addresses

Page - 6 User Mode BCB Zephyr

training

Memory domains and partitions

B Memory domains in Zephyr are designed to control memory access
from user threads.

B Each domain consists of one or more partitions.
L A partition is a contiguous memory region where global variables are defined.

L The same partition can be specified in multiple memory domains (shared).
Memory

Domain A Partition 1
......................... 1 AppA
A

Domain B Partition Shared *

Partition 2 =

Page - 7 User Mode aCG Zephyr

training

Memory Domains

B Memory domains are not intended to control access to memory from
supervisor (kernel) mode.

B APIs are accessible only in supervisor mode, not in user mode.

B Threads and Memory Domains
O All threads, including supervisor threads, are members of a memory domain.

® The default domain, k_mem_domain_default

dC6—-

Page - 8 User Mode g
training

Memory Partitions in Memory Domains

B Partitions are intended to control access to system RAM.

B Each partition consists of a memory address, a size, and permission
O They must represent regions programmable by MPU/MMU.
O Partitions within the same memory domain must not overlap.
O The same partition may be specified in multiple memory domains.

B Two methods for defining memory partitions:
 Manual or automatic; it is usually done automatically

User Mode aCG Zephyr

Page -9 training

Automatic Memory Partitions

Automatic memory partitions are created by the Zephyr build system.
O Globals requiring specific memory partitions are tagged accordingly.

Characteristics of Automatic Memory Partitions:
O They are defined using K_ APPMEM_PARTITION_DEFINE().

[Global variables are directed to the partition using K_APP_DMEM() for initialized
data and K_APP_BMEM() for BSS

During boot, the system zeroes any BSS variables within the memory block.

Page -

10 User Mode aCG Zephyr

training

Example (1/2)

/* Memory partitions definitions */
K_APPMEM_PARTITION_DEFINE(partitionil);

/* Variables in specific memory partitions */
K_APP_DMEM(partitionl) int var_1 = 11;

/* Thread functions for application A */
void app_a_threads(void *argl, void *arg2, void *arg3)

{

printk("App A, Thread %d: can access var_1 = %d and var_shared = %d\n", \
(int) argl, var_1, var_shared); // OK

printk("App A, Thread %d: cannot access var_2\n", (int) argl); // fatal
}

Page - 11 User Mode aCG Zephyr

training

Example (2/2)

/* Memory domains declarations */
struct k_mem_domain domain_a;

/* Memory partition configuration arrays */
struct k_mem_partition *app_a_partitions[] = { &partitionl, other...};

int main(void)

{

/* Initialize and assign partitions to domains */
k_mem_domain_init(&domain_a, ARRAY_SIZE(app_a_partitions), app_a_partitions);

/* Add appl threads to domain a */
k_mem_domain_add thread(&domain_a, tid_app al);

}

Page - 12 User Mode aCG Zephyr

training

Automatic Memory Domain build flow

Various application C files built with kernel
K_APPMEM_PARTITION_DEFINE(partition_foo);

.

generated linker script fragment, included by main linker.ld

.. . - fred
K_APP_DMEM(partition_foo) unsigned int x = 22; plugh
K_APP_BMEM(partition_foo) int y;
K_APP_BMEM(partition_foo) char z[128] partition_baz = xyzzy } bss
K_APPMEM_PARTITION_DEFINE(partition_bar); padding
K_APP_DMEM(partition_bar) int courge = 9; -
K_APP_BMEM(partition_bar) int grault[7]; X
| app_smem
Third-party library libbaz.a file data section in
partition_foo =)zr bss final zephyr.elf
int fred = 12; gen_app_partitions.py
unsigned Tong long plugh = 378; | padding
data ition b i courge
- . . , partition_bar _
. -1 1ibbaz.a partition_baz (in makefiles
int xyzzy[200]; P { les} grault }bss
bss other kernel
memory
Adjusted Size for Cortex-
M7
partition_foo 128 +4+4 =136 256 (next power of 2) .
o e artition_foo
partition_bar 4+(4*7)=32 32 gartition_bar contents populated by linker
partition_baz (200*4)+8+4=812 1024 (next power of 2) partition_baz symbols
Page - 13 User Mode a CG Zephyr

training

Agenda User mode

Overview
Memory Domains

B Syscalls

User Mode a CG Zephyr

training

Kernel objects in a nutshell

B Kernel objects are zephyr’s core components
O like mutexes, semaphores, and device drivers, among others.

B User threads must have explicit permissions to access these objects
O This is a crucial aspect of Zephyr’s security model
L Permissions are granted on a per-object basis
® Each thread can interact with objects while being restricted from others

B Supervisor threads have unrestricted access to any kernel object

Page - 15 User Mode aCG Zephyr

training

The concept

B System calls are special functions to interact with the core features.

B Each time an application makes a system call, Zephyr checks all the
Information provided to ensure that it is correct and safe.

B Zephyr checks whether a system call originates from a user thread or
a supervisor thread.

O User thread: Zephyr verifies whether it has the explicit permission.
® If the permission is granted, the operation proceeds;
® if not, the system call returns an error.

® Note:

O Granting permissions to kernel objects operates independently from logical
applications or memory domains.

Page - 16 User Mode aCG Zephyr

training

The concept

Syscall

fmm
AppA J:{ AppB)il AppN User Mode

Kernelthreads) Kernel Mode

Subsystems

Synchronization

Data passing

Device drivers

Zephyr kernel

Processing core (e.g. cortex-M)

Page - 17

User Mode aCG Zephyr

training

Example

/* Define the semaphore (kernel object) */
K_SEM DEFINE(my_sem, 9, 1);

/* User threadl entry function */
void user_threadl(void *pl, void *p2, void *p3) {
if (k_sem_take(&my_sem, K_FOREVER) == 0) {
printk("User threadl: Successfully accessed the semaphore.\n");
}
}

/* Fatal error handler */
void k_sys_fatal_error_handler(unsigned int reason, const z_arch_esf_t *esf) {
if(reason == K_ERR_KERNEL_OOPS) {
printk("“Kernel 00PS in : %s\n", k_thread_name_get(k_current_get()));
}
}

/* main is a kernel thread */
int main(void) {
k_object_access_grant(&my_sem, user_threadl_id);

}

Page - 18 User Mode aCG Zephyr

training

Test it on FRDM-MCXN947

B Install MCUXpresso for Visual Studio Code

M Visit our github and clone projects
O https://github.com/Ac6Embedded/Zephyr-Examples

Page - 19 User Mode aCG Zephyr

training

Summary User mode

B Overview
B Memory Domains

B Syscalls

User Mode aCG Zephyr

training

	Diapositive 0 User Mode in Zephyr: Explained in Simple Words
	Diapositive 1
	Diapositive 2 Introduction to User Mode
	Diapositive 3 Key Features of User Mode
	Diapositive 4 User Mode in Zephyr
	Diapositive 5
	Diapositive 6 User mode application structure
	Diapositive 7 Memory domains and partitions
	Diapositive 8 Memory Domains
	Diapositive 9 Memory Partitions in Memory Domains
	Diapositive 10 Automatic Memory Partitions
	Diapositive 11 Example (1/2)
	Diapositive 12 Example (2/2)
	Diapositive 13 Automatic Memory Domain build flow
	Diapositive 14
	Diapositive 15 Kernel objects in a nutshell
	Diapositive 16 The concept
	Diapositive 17 The concept
	Diapositive 18 Example
	Diapositive 19 Test it on FRDM-MCXN947
	Diapositive 20

