
Zephyr in Education

Zephyr usage in ZHAW labs
David Lorenz <lorv@zhaw.ch>, Johannes Neyer <neye@zhaw.ch>

mailto:lorv@zhaw.ch
mailto:neye@zhaw.ch

Team IoT, InES, ZHAW
- Zephyr in research projects since 2019 (v1.14)

- Evaluation of the Zephyr RTOS in a Master’s thesis
- Wide adoption of Zephyr in research and

development projects

Team IoT, InES, ZHAW
- Now also in education

- Zephyr is used in laboratories of several lectures
- Microcomputing Systems 1 (Bachelor)
- Embedded Real-Time Software (Master)
- Embedded Security (WBK)

- Firmware of student projects (Bachelor/Master theses)

Embedded Real-Time Software (Master)
- Threads and Scheduling Concepts
- Resource Locks (Mutexes, Semaphores) (Dining

Philosophers Problem)
- Debugging (SEGGER Ozone, SEGGER SystemView)

Embedded Security (WBK)
- 3 Labs based on Zephyr RTOS on a nRF52840 dev-kit

- Certificate based authentication to a server with the
addition of a secure-element

- Secure boot with MCUBoot and Sysbuild
- Secure OTA update with MCUBoot and Sysbuild

Embedded Security (WBK)
- Authentication with secure-element

- What is a secure-element?
- Crypto acceleration
- Secure storage
- Public-/private-key management

Embedded Security (WBK)
- Authentication with secure-element

- Transform secure-element SDK into a proper Zephyr
module
- Provide necessary hardware abstractions and data

structures
- CMakeLists.txt
- Kconfig
- module.yaml

Embedded Security (WBK)
- Secure boot/update with MCUBoot and Sysbuild

- MCUBoot bootloader
- Default bootloader in Zephyr
- Not part of the Zephyr-project

Embedded Security (WBK)
- Secure boot/update with MCUBoot and Sysbuild

- Sysbuild
- Higher-level build system written in CMake
- Introduced in Zephyr 3.2.0
- Used to build several applications in one run

(e.g. bootloader and main application)

Problems with Zephyr in Education
- Time in the labs is limited

- Focus is on lab content and not development
environment

- Maximizing time for students to work on the
problem while minimizing debugging the
development environment

Problems with Zephyr in Education
- Zephyr is new for students
- Every student has a different setup
- Lab supervisor must be able to provide help

efficiently

Development Environment for Students
- Goal:

- Uniform
- Reproducible
- Easy and quick to set up
- Easy to maintain

Development Environment for Students
- Initial solution: Ubuntu Desktop VM (~10 GiB)

- Not reproducible
- Time consuming to set up and maintain
- Uses a lot of resources (storage, RAM, CPU)
- Forces students to work inside of VM
- Unreliable file sharing
- Reliable hardware access
- Works on Windows/MacOS/Linux

Development Environment for Students
- Current solution: container / WSL image

(~ 2 GiB / ~ .5 GiB compressed)
- Sufficiently reproducible
- Lean resource usage
- Reliable file sharing
- Students can use familiar environment
- Works on Windows/MacOS/Linux
- WSL: hardware is not accessible out of the box

SEGGER tools (J-Flash Lite, J-Link scripts) are used
on host for flashing the board

Development Environment for Students

FROM debian:12-slim

Install apt packages
Install pip packages
Install Zephyr SDK
Clone Zephyr

WORKDIR /root/dev
CMD ["bash"]

Development Environment for Students

docker build \

--build-arg="ZEPHYR_VERSION=4.0.0" \

--build-arg="SDK_VERSION=0.17.0" \

--build-arg="MODULES=cmsis hal_stm32 segger" \

. -t zephyr_v4.0.0

Development Environment for Students

cid=$(docker create zephyr_v4.0.0)

docker export $cid > zephyr_v4.0.0_wsl.tar

https://learn.microsoft.com/en-us/windows/wsl/use-custom-distro

https://learn.microsoft.com/en-us/windows/wsl/use-custom-distro

Development Environment for Students

cid=$(docker create zephyr_v4.0.0)

docker export $cid > zephyr_v4.0.0_wsl.tar

wsl --import zephyr_v4.0.0 `

\path\to\wslDistroStorage\zephyr_v4.0.0 `

zephyr_v4.0.0_wsl.tar
https://learn.microsoft.com/en-us/windows/wsl/use-custom-distro

https://learn.microsoft.com/en-us/windows/wsl/use-custom-distro

Development Environment for Students
- Challenges / Outlook

- Some people new to shell / containers / WSL
- Container future proof

- Successfully conducted two iterations with container
- Pleasant setup experience
- Could cope with heterogeneity
- All students had a working setup
- Positive students feedback

