Rethinking
Embedded Development:

Zephyr Through the Eyes of
Model Driven Engineering

Team inovex
Karlsruhe - Koln - Minchen - Hamburg
Berlin - Stuttgart - Pforzheim - Erlangen

\ g

inovex

Dr. Tobias Kastner

Solution Architect Medical IoT
#FOSS4MEDICAL

e PhD in Physics (long ago)

e SW/System Architect since 15 years
o mainly Medical Devices

e Trainer & Technical Consultant

m Tobias Kaestner o SW-Architecture, Zephyr, Yocto
e In Love w/ Zephyr since 2016
O @tobiaskaestner o realised several prototype projects for life-science R&D
o Maintainer of TiacSys-Bridle Project
Q @tobiaskaestner o Participant Zephyr Safety-WG & Zephyr TSC

e Inovex Zephyr Project Silver Member since Nov 2024

\ g

inovex

Agenda for today

e Averyshort 101 on MDSD
e The many DSLs of Zephyr
e The power of models

inovex

A very short 101 on MDSD

What is a model - and if, how many?

Models are sense-making devices to

encode information about the world
and reason about its properties
communicate our understanding &
make predictions

Source: wikipedia

4

inovex

The many forms of models s,

1=
I 41
Models are
{‘ e
3
GPIO ntertace ‘
327 #ifdef UARTE_ANY_NONE_ASYNC
O 328 4% —
® UuUnavoidable w9~ erier tmernnt service routine.
330 *
331 * This simply calls the callback function, if one exists.
i =
® abstractions b
334 */
335 static void uarte_nrfx_isr_int(const void *arg)
) (] L] 336 {
Y d omain-s pec]f] C const struce device wdev = arg:
338 const struct uarte_nrfx_config *config = dev->config; . . .
339 struct uarte_nrfx_data *data = dev->data; F
o 340 NRF_UARTE_Type *uarte = get_uarte_instance(dev);
® not guaranteed to agree with each
342

/% If interrupt driven and asynchronous APIs are disabled then UART

* interrupt is still called to stop TX. Unless it is done using PPI.
344 */
otner

if (1IS_ENABLED(UARTE_HAS_ENDTX_STOPTX_SHORT) &&

346 nrf_uarte_int_enable_check(uarte, NRF_UARTE_INT_ENDTX_MASK) &&

347 nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX)) {

348 endtx_isr(dev);

349 ¥

350

351 bool txstopped = nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED);
352

353 if (txstopped & (IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME) || LOW_POWER_ENABLED(config))) {
354 unsigned int key = irg_lock();

355

356 if (IS_ENABLED(CONFIG_PM_DEVICE RUNTIME) &&

357 (data->flags & UARTE_FLAG_POLL_OUT)) {

358 data->flags &= ~UARTE_FLAG_POLL_OUT;

359 pn_device_runtine_put(dev);

360 } else {

361 nrf_uarte_disable(uarte);

362 ¥

363

364 #ifdef UARTE_INTERRUPT_DRIVEN

365 if (!data->int_driven || data->int_driven->fifo_fill_lock == @)

366 #endif

inovex

Models in Embedded

System Model

(Architecture)

Embedded Development comprises of \«7\ %

&
S
@

(57

Hardware Model Software Model
(Schematic, Layout) (Architecture, Design)

e System Development Domain
e Hardware Development Domain
e Software Development Domain

Key Challenges of Embedded Development ﬁ Product

D

Product Hardware

oftware

e how to make sure models do align
e propagate changes consistently
e deal with implicit models ‘)

inovex

Models in Embedded

Embedd
e Sys
e Har
e Soff

Key Cha
e how
® proj
e dea

Industry
Standards

’ Systems Engineering

N\

Requirements

System Model/
System
Architecture

User Needs
Market Needs

Systems Engineering Tools
RQT Eng Tool, SysML Modeler

System Model

(Architecture)

Downstream Engineering

MCAD Models Machanical

Assemblies

odel

Design)

ECAD Models Eeed

Circuit Boards

7 Software Models Software

i

Engineering Tools 0

CAD, Compilers, Simulati
ompilers, Simulation novex

Model Driven Software Development g

De SOftWare
“MDSD therefore aims to find domain-specific abstractions and make them accessible ve'OPMent
through formal modeling. This procedure creates a great potential for automation of software Technology,

. . . L3 LJ L L * nginecringy
production, which in turn leads to increased productivity. Moreover, both the quality and main- Managemen;

tainability of software systems increase.[...] The adjective ‘driven’ in ‘Model-Driven Software
Development’ [...] emphasizes that this paradigm assigns models a central [...] role:
they are at least as important as source code.

To successfully apply the ‘domain-specific model’ concept, three requirements must be met:

e Domain-specific languages are required to allow the actual formulating of models.

e Languages that can express the necessary model-to-code transformations are needed.
e Compilers, generators or transformers are required that can run the transformations to
generate code executable on available platforms.”

MDSD by Stahl and Voelker, 2006 0

https://voelter.de/data/books/mdsd-en.pdf 1novex

https://voelter.de/data/books/mdsd-en.pdf

The many DSLs of Zephyr

1

Models in Zephyr

3 domain-specific models at play

Feature Model: select desired functionality

Hardware Model: to describe
hardware properties

Build System: to describe build process

Hardware

Model

“ Build System

\ g

inovex

Feature
Model
Hardware ” Build

west build -b nucleo g474re samples/hello world

Models in Zephyr

3 domain-specific models at play

invoke select hardware select
CMake & features application
build <BOARD>.dts & features

system

<BOARD> defconfig prj.conf

\ g

12 inovex

13

Feature
Model

. e Hardware “ Build

3 domain-specific models at play Model System

west build -b nucleo g474re samples/hello world

Models in Zephyr

invoke select hardware select
CMake & features application
build <BOARD>.dts & features

system

<BOARD> defconfig prj.conf

models are coupled and interact with each other !!! . 0
1novex

Introducing ACME-NG

A couple of years ago ...

. R — Development Rig Goals of ACME : develop new type of
ervices ystem Functions q .
Module 1 high-performance test to diagnose
s Covid-19
Scope Scope Scope
DataSCOpe Bindings Bindings Bindings Module 2 . . .
gﬂ‘:‘z Iterative system design - basic system
jotor,
MOTERPG RPC RPC RPC functions known but specific details
falich il ik dependent on reagent chemistry
Shell = = —— developed simultaneously
Bindings Bindings Bindings
povems P P Time to Market - extremely
Logic Logic Logic time-sensitive due to ongoing pandemic
RTOS
Module 1 Module 2 Module 3 R R . .
(Heater) (Motor) (AFE) Supply-Chain-Risks - Availability of HW
components worsened dramatically
during project time :

inovex

15

Modeling Software Features w/ Kconfig

Services System Functions

Scope Scope Scope

DataScope Bindings Bindings Bindings
RPC RPC RPC

MQTT-RPC Bindings Bindings Bindings
Shell Shell Shell

Shell Bindings Bindings Bindings
Core Core Core
Logic Logic Logic

RTOS
Module 1 | [Module 2 | | Module 3

(Heater) (Motor) (AFE)

O oo NOOOVISAE WNR

e el el =
WN RO

menu "ACME Subsystems"

menu "Modules"
rsource "m_heater/Kconfig"
rsource "m_motor/Kconfig"
rsource "m_afe/Kconfig"
endmenu #Modules

menu "Core Services"
rsource "s_mqtt_rpc"
rsource "s_datascope"

endmenu #Core Services

endmenu #ACME Subsystems

System Model

(Architecture)

Software Model
(Architecture, Design)

\ 4

inovex

O oo NGO UL A WN K=

el el =
WN RS

Modeling Software Features w/ Kconfig

menu "ACME Subsystems"

menu "Modules"

rsource "m_heater/Kconfig"
rsource "m_motor/Kconfig"
rsource "m_afe/Kconfig"
endmenu #Modules

menu "Core Services"
rsource "s_mqtt_rpc"
rsource "s_datascope"

endmenu #Core Services

endmenu #ACME Subsystems

0 NOoO U1 A WNPR

menuconfig ACME_SUBSYS_HEATER # option to toggle the entire subsystem on/off

bool "Heater subsystem"
help

The Heater subsystem is responsible for measuring and controlling

the temperature.
if ACME_SUBSYS_HEATER

config ACME_SUBSYS_HEATER_THREAD_STACK_SIZE
int "Stack size of subsystem thread"
default 2048

config ACME_SUBSYS_HEATER_MQTT_RPC
bool "Enable MQTT-RPC bindings for $(subsys-str) subsystem"
depends on ACME_MQTT_RPC

config ACME_SUBSYS_HEATER_SHELL
bool "Enable shell bindings for $(subsys-str) subsystem"
depends on SHELL

config ACME_SUBSYS_HEATER_SCOPE
bool "Enable data scope bindings for $(subsys-str) subsystem"

depends on ACME_SCOPE #only selectable if datascope is enabled

endif

Modeling Software Features w/ Kconfig

Kconfig is a domain-specific language to describe software feature models

e features are typed & can relate to each other (select, depend, imply)
e models can be composed from smaller models ([or] source)
e models are transformed at build time into C language constructs

config FEATURE_A
bool “Try me out”

‘ CONFIG_FEATURE_A=y |» #define CONFIG_FEATURE_A |

acme/KConfig .config i nclude/genefrsted/autoc >
onf.

17 inovex

18

Modeling Hardware Features w/ Devicetree

Devicetree is a domain-specific
language to describe hardware
properties which are software
relevant

If used correctly, HW setups can be
mapped faithfully to devicetree models
including hardware interface aka
interconnects

Original Hardware Setup

Peripherals vX PCBA S

| Peripherals
Connector

Control pcBA D

Devicetree Representation

<<Shield>>
peripherals vl

<<Shield>>
peripherals v2

Y VY

<<Board>>
control

prph_IF

—>

<<Board Include>>
ctl prph if

\ g

inovex

/

{

model = "Nordic nRF52840 DK NRF52811";
compatible = "nordic,nrf52840-dk-nrf52811";

aliases {
led0 = &ledO;
leds {
compatible =
led0: led 0 {
gpios = <s&gpio0 13 GPIO ACTIVE LOW>;
label = "Green LED 0";

"gpio-leds";

}i
gpio0: gpio@50000000 {
gpio-controller;
compatible = "nordic,nrf-gpio";
reg =
#gpio-cells = < 0x2 >;
status = "okay";

}s

Modeling Hardware Features w/ Devicetree

scripts/dts/gen_defines.py

< 0x50000000 0x200 0x50000500 0x300

R 4

#include <generated/devicetree_generated.h>

L)

#include <zephyr/devicetree.h>
#define LEDO NODE DT ALIAS(led0)

static const struct gpio dt spec
gpios);

int main(void)

int ret;
bool led state = true;

if (!gpio_is ready dt(& led)) {
return 0;

}

ret = gpio pin configure dt(&led, GPIO OUTPUT ACTIVE);

led = GPIO_DT SPEC_GET (LED0O_NODE,

20

The power of models

\ 4

inovex

21

When supply chains fall apart ...

Original Hardware Setup Devicetree Representation

<<Shield>>
peripherals vl

<<Shield>>
peripherals v2

Peripherals vX PCBA o

___1 Peripherals Y V¥
! Connector

prph_IF

<<Board>>

control
Control PCBA D)

—>»| <<Board Include>>
ctl prph if

devicetree models allowed us to

compensate for all HW changes without
touching a single line of source code

When ACME needed parts to make
hardware the most, the parts had
disappeared ...

... and all we could do, was to by
existing devkit boards

Improvised Hardware Setup

Peripherals vX

Nucleo
(F767zi)

Peripherals
Connector

ST-Morpho

o

Connector

Devicetree Representation

<<Shield>>
peripherals_vl

<<Shield>>
peripherals_v2

v

prph_IF

<<Shield>>
x_nucleo_nexus

v

morpho_IF

<<Board>>
nucleo_£767zi

22

When supply chains fall apart ...

Improvised Hardware Setup

Peripherals vX
Nucleo
(F767zi)

Devicetree Representation

<<Shield>>
peripherals v2

<<Shield>>
peripherals vl

a—

Peripherals
Connector

prph_IF
e <<Shield>>
x_nucleo_nexus
ST-Morpho ¢
Connector morpho_IF
<<Board>>
nucleo f767zi

west build
west build

1
o

core -shield peripherals vl acme_app
core -shield peripherals v2 acme_app

1
o

west build -b nucleo £f767zi -shield x nucleo_nexus
west build -b nucleo h743zi -shield x nucleo_nexus

Development Rig Variants

Control

Nucleo F767

(w/ Nexus)

Nucleo H743

(w/ Nexus)

Nucleo H745

(w/ Nexus)

-shield peripherals vl acme_app
-shield peripherals vl acme_app

nivwveXx

23

Feature
Model
Hardware ” Build

Appropriate: Devicetree, Kconfig and CMake established and mature

What makes us go that fast w/ models?

Textual DSL: easy to diff and version control, models as code
Automated: model transformations happen as part of software build process

Transparent: generated expressions consumable by standard C compiler

\ g

inovex

24

Feature
Model
Hardware ” Build

Integrable: Models can interact with each other to further increase usefulness

What makes us go that fast w/ models?

Extensible: Model languages can be extended with new constructs
Open: Underlying technologies open-source, no limitations to use or future

development

N4

inovex

25

/Y7
No model is perfect - never H 4

Existing models as expressed by Kconfig, Devicetree and Zephyr CMake functions

already extremely powerful ...

... however, not without limitations:

e missing abstractions: connectors (interface & multi-instance)
e missing concepts: multi-board setups (only via --shield ... --shield ...)

e missing composability: CS-lines of SPI devices

v

inovex

26

Conclusion

e Zephyr showcases MDSD techniques, not through intent but by
convergence
e Productivity gains partly explainable through this modeling approach
e Still plenty of space for improvements:
o What other transformations could be looked at?

o What other domains could be modeled?

v

inovex

27

Thank You

Zephyr Hands-On Trainings
starting 2025: Jan 22/23, Apr 02/03, Jul 02/03

Find out more
https://www.inovex.de/de/training/zephyr-basic-training/

Dr. Tobias Kastner .
Solution Architect Medical IoT Tobias Kaestner

tobias.kaestner@inovex.de

O @tobiaskaestner
+49 152 3314 8940

Allee am Rothelheimpark 11, Q i 0
91952 Erlangen @tobiaskaestner e

mailto:tobias.kaestner@inovex.de
https://www.google.com/maps/place//data=!4m2!3m1!1s0x47a1ffffca603815:0x62917934dd69623a?sa=X&ved=1t:8290&ictx=111
https://www.google.com/maps/place//data=!4m2!3m1!1s0x47a1ffffca603815:0x62917934dd69623a?sa=X&ved=1t:8290&ictx=111
https://www.inovex.de/de/training/zephyr-basic-training/

