
Rethinking
Embedded Development:

Zephyr Through the Eyes of
Model Driven Engineering

Team inovex
Karlsruhe · Köln · München · Hamburg
Berlin · Stuttgart · Pforzheim · Erlangen

Dr. Tobias Kästner

Solution Architect Medical IoT

#FOSS4MEDICAL

● PhD in Physics (long ago)
● SW/System Architect since 15 years

○ mainly Medical Devices
● Trainer & Technical Consultant

○ SW-Architecture, Zephyr, Yocto
● In Love w/ Zephyr since 2016

○ realised several prototype projects for life-science R&D
○ Maintainer of TiacSys-Bridle Project
○ Participant Zephyr Safety-WG & Zephyr TSC

● Inovex Zephyr Project Silver Member since Nov 2024

2

Tobias Kaestner

@tobiaskaestner

@tobiaskaestner

● A very short 101 on MDSD
● The many DSLs of Zephyr
● The power of models

3

Agenda for today

A very short 101 on MDSD

4

5

What is a model - and if, how many?
Source: wikipedia

Source: wikipedia

Models are sense-making devices to

● encode information about the world
● and reason about its properties
● communicate our understanding &
● make predictions

6

The many forms of models

Models are

● unavoidable
● abstractions
● domain-specific
● not guaranteed to agree with each

other

7

Models in Embedded

Embedded Development comprises of

● System Development Domain
● Hardware Development Domain
● Software Development Domain

System Model
(Architecture)

Hardware Model
(Schematic, Layout)

Software Model
(Architecture, Design)

Product Hardware

Product
Software

de
riv

es
 fr

om

Key Challenges of Embedded Development

● how to make sure models do align
● propagate changes consistently
● deal with implicit models

8

Models in Embedded

Embedded Development comprises of

● System Development Domain
● Hardware Development Domain
● Software Development Domain

System Model
(Architecture)

Hardware Model
(Schematic, Layout)

Software Model
(Architecture, Design)

Product Hardware

Product
Software

de
riv

es
 fr

om

Key Challenges of Embedded Development

● how to make sure models do align
● propagate changes consistently
● deal with implicit models

9

Model Driven Software Development

“MDSD therefore aims to find domain-specific abstractions and make them accessible
through formal modeling. This procedure creates a great potential for automation of software
production, which in turn leads to increased productivity. Moreover, both the quality and main-
tainability of software systems increase.[…] The adjective ‘driven’ in ‘Model-Driven Software
Development’ [...] emphasizes that this paradigm assigns models a central [...] role:
they are at least as important as source code.

To successfully apply the ‘domain-specific model’ concept, three requirements must be met:

• Domain-specific languages are required to allow the actual formulating of models.
• Languages that can express the necessary model-to-code transformations are needed.
• Compilers, generators or transformers are required that can run the transformations to
generate code executable on available platforms.”

MDSD by Stahl and Voelker, 2006

https://voelter.de/data/books/mdsd-en.pdf

https://voelter.de/data/books/mdsd-en.pdf

The many DSLs of Zephyr

10

11

Models in Zephyr

Hardware
Model

Feature
Model

Build System

3 domain-specific models at play

Feature Model: select desired functionality

Hardware Model: to describe
 hardware properties

Build System: to describe build process

12

Models in Zephyr

Hardware
Model

Feature
Model

Build
System3 domain-specific models at play

west build -b nucleo_g474re samples/hello_world

invoke
CMake
build

system

select hardware
& features

<BOARD>.dts
<BOARD>_defconfig

select
application
& features
prj.conf

13

Models in Zephyr

Hardware
Model

Feature
Model

Build
System3 domain-specific models at play

west build -b nucleo_g474re samples/hello_world

invoke
CMake
build

system

select hardware
& features

<BOARD>.dts
<BOARD>_defconfig

select
application
& features
prj.conf

models are coupled and interact with each other !!!

14

Introducing ACME-NG
A couple of years ago …

Goals of ACME : develop new type of
high-performance test to diagnose
Covid-19

Iterative system design - basic system
functions known but specific details
dependent on reagent chemistry
developed simultaneously

Time to Market - extremely
time-sensitive due to ongoing pandemic

Supply-Chain-Risks - Availability of HW
components worsened dramatically
during project time

15

Modeling Software Features w/ Kconfig

System Model
(Architecture)

Software Model
(Architecture, Design)

16

Modeling Software Features w/ Kconfig

17

Modeling Software Features w/ Kconfig

Kconfig is a domain-specific language to describe software feature models

● features are typed & can relate to each other (select, depend, imply)
● models can be composed from smaller models ([or]source)
● models are transformed at build time into C language constructs

config FEATURE_A
 bool “Try me out”

acme/KConfig

CONFIG_FEATURE_A=y

.config

#define CONFIG_FEATURE_A

include/generated/autoc
onf.h

18

Modeling Hardware Features w/ Devicetree

Devicetree is a domain-specific
language to describe hardware
properties which are software
relevant

If used correctly, HW setups can be
mapped faithfully to devicetree models
including hardware interface aka
interconnects

19

Modeling Hardware Features w/ Devicetree

/ {
model = "Nordic nRF52840 DK NRF52811";
compatible = "nordic,nrf52840-dk-nrf52811";

aliases {
led0 = &led0;

leds {
compatible = "gpio-leds";
led0: led_0 {

gpios = <&gpio0 13 GPIO_ACTIVE_LOW>;
label = "Green LED 0";

};

gpio0: gpio@50000000 {
gpio-controller;
compatible = "nordic,nrf-gpio";
reg = < 0x50000000 0x200 0x50000500 0x300 >;
#gpio-cells = < 0x2 >;
status = "okay";
…
};

}

#include <zephyr/devicetree.h>

#define LED0_NODE DT_ALIAS(led0)

static const struct gpio_dt_spec led = GPIO_DT_SPEC_GET(LED0_NODE,
gpios);

int main(void)
{

int ret;
bool led_state = true;

if (!gpio_is_ready_dt(& led)) {
return 0;

}

ret = gpio_pin_configure_dt(&led, GPIO_OUTPUT_ACTIVE);
…

#include <generated/devicetree_generated.h>

scripts/dts/gen_defines.py

The power of models

20

21

When supply chains fall apart …

When ACME needed parts to make
hardware the most, the parts had
disappeared …

… and all we could do, was to by
existing devkit boards

devicetree models allowed us to
compensate for all HW changes without
touching a single line of source code

22

When supply chains fall apart …

west build -b core -shield peripherals_v1 acme_app
west build -b core -shield peripherals_v2 acme_app

west build -b nucleo_f767zi -shield x_nucleo_nexus -shield peripherals_v1 acme_app
west build -b nucleo_h743zi -shield x_nucleo_nexus -shield peripherals_v1 acme_app

23

Appropriate: Devicetree, Kconfig and CMake established and mature

Textual DSL: easy to diff and version control, models as code

Automated: model transformations happen as part of software build process

Transparent: generated expressions consumable by standard C compiler

What makes us go that fast w/ models?

Hardware
Model

Feature
Model

Build
System

24

Integrable: Models can interact with each other to further increase usefulness

Extensible: Model languages can be extended with new constructs

Open: Underlying technologies open-source, no limitations to use or future

development

What makes us go that fast w/ models?

Hardware
Model

Feature
Model

Build
System

25

Existing models as expressed by Kconfig, Devicetree and Zephyr CMake functions

already extremely powerful …

No model is perfect - never

… however, not without limitations:

● missing abstractions: connectors (interface & multi-instance)

● missing concepts: multi-board setups (only via --shield … --shield …)

● missing composability: CS-lines of SPI devices

26

Conclusion

● Zephyr showcases MDSD techniques, not through intent but by

convergence

● Productivity gains partly explainable through this modeling approach

● Still plenty of space for improvements:

○ What other transformations could be looked at?

○ What other domains could be modeled?

Thank You

27

Dr. Tobias Kästner
Solution Architect Medical IoT

tobias.kaestner@inovex.de

+49 152 3314 8940

Allee am Röthelheimpark 11,
91052 Erlangen

Tobias Kaestner

@tobiaskaestner

@tobiaskaestner

Zephyr Hands-On Trainings
starting 2025: Jan 22/23, Apr 02/03, Jul 02/03

Find out more
https://www.inovex.de/de/training/zephyr-basic-training/

mailto:tobias.kaestner@inovex.de
https://www.google.com/maps/place//data=!4m2!3m1!1s0x47a1ffffca603815:0x62917934dd69623a?sa=X&ved=1t:8290&ictx=111
https://www.google.com/maps/place//data=!4m2!3m1!1s0x47a1ffffca603815:0x62917934dd69623a?sa=X&ved=1t:8290&ictx=111
https://www.inovex.de/de/training/zephyr-basic-training/

