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● A very short 101 on MDSD
● The many DSLs of Zephyr
● The power of models
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Agenda for today



A very short 101 on MDSD
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What is a model - and if, how many?
Source: wikipedia

Source: wikipedia

Models are sense-making devices to

● encode information about the world
● and reason about its properties
● communicate our understanding &
● make predictions
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The many forms of models

Models are 

● unavoidable
● abstractions
● domain-specific
● not guaranteed to agree with each 

other
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Models in Embedded

Embedded Development comprises of

● System Development Domain
● Hardware Development Domain
● Software Development Domain

System Model
(Architecture)

Hardware Model
(Schematic, Layout)

Software Model 
(Architecture, Design)

Product Hardware

Product 
Software
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Key Challenges of Embedded Development
 
● how to make sure models do align
● propagate changes consistently
● deal with implicit models
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Model Driven Software Development

“MDSD therefore aims to find domain-specific abstractions and make them accessible
through formal modeling. This procedure creates a great potential for automation of software
production, which in turn leads to increased productivity. Moreover, both the quality and main-
tainability of software systems increase.[ … ] The adjective ‘driven’ in ‘Model-Driven Software 
Development’ [...]  emphasizes that this paradigm assigns models a central [...] role:
they are at least as important as source code.

To successfully apply the ‘domain-specific model’ concept, three requirements must be met:

• Domain-specific languages are required to allow the actual formulating of models.
• Languages that can express the necessary model-to-code transformations are needed.
• Compilers, generators or transformers are required that can run the transformations to
generate code executable on available platforms.”

MDSD by Stahl and Voelker, 2006  

https://voelter.de/data/books/mdsd-en.pdf

https://voelter.de/data/books/mdsd-en.pdf


The many DSLs of Zephyr 
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Models in Zephyr

Hardware 
Model

Feature 
Model

Build System

3 domain-specific models at play

Feature Model: select desired functionality

Hardware Model: to describe 
 hardware properties

Build System: to describe build process 
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Models in Zephyr

Hardware 
Model

Feature 
Model

Build 
System3 domain-specific models at play

west build -b nucleo_g474re samples/hello_world

invoke 
CMake 
build 

system

select hardware 
& features

<BOARD>.dts
<BOARD>_defconfig

select 
application 
& features
prj.conf 
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Models in Zephyr

Hardware 
Model

Feature 
Model

Build 
System3 domain-specific models at play

west build -b nucleo_g474re samples/hello_world

invoke 
CMake 
build 

system

select hardware 
& features

<BOARD>.dts
<BOARD>_defconfig

select 
application 
& features
prj.conf 

models are coupled and interact with each other !!!
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Introducing ACME-NG
A couple of years ago …

Goals of ACME : develop new type of 
high-performance test to diagnose 
Covid-19

Iterative system design - basic system 
functions known but specific details 
dependent on reagent chemistry 
developed simultaneously

Time to Market - extremely 
time-sensitive due to ongoing pandemic

Supply-Chain-Risks - Availability of HW 
components worsened dramatically 
during project time
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Modeling Software Features w/ Kconfig

System Model
(Architecture)

Software Model 
(Architecture, Design)
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Modeling Software Features w/ Kconfig
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Modeling Software Features w/ Kconfig

Kconfig is a domain-specific language to describe software feature models 

● features are typed & can relate to each other (select, depend, imply)
● models can be composed from smaller models ([or]source)
● models are transformed at build time into C language constructs

config FEATURE_A
   bool “Try me out”

acme/KConfig

CONFIG_FEATURE_A=y

.config

#define CONFIG_FEATURE_A

include/generated/autoc
onf.h
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Modeling Hardware Features w/ Devicetree

Devicetree is a domain-specific 
language to describe hardware 
properties which are software 
relevant

If used correctly, HW setups can be 
mapped faithfully to devicetree models 
including hardware interface aka 
interconnects 
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Modeling Hardware Features w/ Devicetree

/ {
model = "Nordic nRF52840 DK NRF52811";
compatible = "nordic,nrf52840-dk-nrf52811";

aliases {
led0 = &led0;

leds {
compatible = "gpio-leds";
led0: led_0 {

gpios = <&gpio0 13 GPIO_ACTIVE_LOW>;
label = "Green LED 0";

};

gpio0: gpio@50000000 {
gpio-controller;
compatible = "nordic,nrf-gpio";
reg = < 0x50000000 0x200 0x50000500 0x300 >;
#gpio-cells = < 0x2 >;
status = "okay";
…
};

}

#include <zephyr/devicetree.h>

#define LED0_NODE DT_ALIAS( led0)

static const struct gpio_dt_spec led = GPIO_DT_SPEC_GET(LED0_NODE, 
gpios);

int main(void)
{

int ret;
bool led_state = true;

if (!gpio_is_ready_dt(& led)) {
return 0;

}

ret = gpio_pin_configure_dt(&led, GPIO_OUTPUT_ACTIVE);
…

#include <generated/devicetree_generated.h>

scripts/dts/gen_defines.py



The power of models 
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When supply chains fall apart …

When ACME needed parts to make 
hardware the most, the parts had 
disappeared …

… and all we could do, was to by 
existing devkit boards

devicetree models allowed us to 
compensate for all HW changes without 
touching a single line of source code
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When supply chains fall apart …

west build -b core -shield peripherals_v1 acme_app
west build -b core -shield peripherals_v2 acme_app

west build -b nucleo_f767zi -shield x_nucleo_nexus -shield peripherals_v1 acme_app
west build -b nucleo_h743zi -shield x_nucleo_nexus -shield peripherals_v1 acme_app
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Appropriate: Devicetree, Kconfig and CMake established and mature

Textual DSL: easy to diff and version control, models as code

Automated: model transformations happen as part of software build process

Transparent: generated expressions consumable by standard C compiler

What makes us go that fast w/ models?

Hardware 
Model

Feature 
Model

Build 
System
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Integrable: Models can interact with each other to further increase usefulness

Extensible: Model languages can be extended with new constructs

Open:  Underlying technologies open-source, no limitations to use or future 

development

What makes us go that fast w/ models?

Hardware 
Model

Feature 
Model

Build 
System
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Existing models as expressed by Kconfig, Devicetree and Zephyr CMake functions 

already extremely powerful … 

No model is perfect - never 

… however, not without limitations:

● missing abstractions: connectors (interface & multi-instance)

● missing concepts: multi-board setups (only via --shield … --shield … )

● missing composability: CS-lines of SPI devices
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Conclusion

● Zephyr showcases MDSD techniques, not through intent but by 

convergence

● Productivity gains partly explainable through this modeling approach

● Still plenty of space for improvements:

○ What other transformations could be looked at?

○ What other domains could be modeled?



Thank You
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Zephyr Hands-On Trainings 
starting 2025: Jan 22/23, Apr 02/03, Jul 02/03 
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