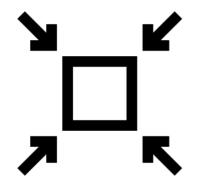
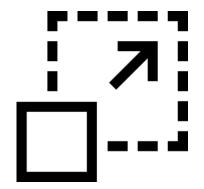


Zephyr Project Overview

A proven RTOS ecosystem, by developers, for developers

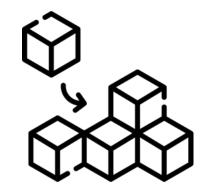
Use cases for a real-time OS





SMALL

yet


SCALABLE

- < 8KB Flash
- < 5KB RAM

from small sensor nodes

... to complex multi-core systems

yet

SECURE

Heavily customizable

Out-of-the-box support for 450+ boards and 100s of sensors

Built with safety & security in mind

Certification-ready

Long-term Support

OPEN-SOURCE

ECOSYSTEM

Permissively licensed (Apache 2.0)

Vendor-neutral governance

Vibrant community
Supported by major silicon vendors

Features overview

- Comprehensive, lightweight, kernel & supporting services
 - Fits where Linux is too big
- Inherently portable & secure
- Highly connected
 - Bluetooth 5.0 & BLE
 - o Wi-Fi, Ethernet, CANbus, ...
 - o IoT protocols: CoAP, LwM2M, MQTT, OpenThread, ...
 - USB & USB-C
- Developer-friendly
 - Logging, tracing, debugging, built-in shell, Windows/Linux/macOS support, ...

Products Running Zephyr Today

Proglove

Ruuvi Tag

PHYTEC Distancer

Keeb.io BDN9

Hati-ACE

Oticon More

Adhoc Smart Waste

GNARBOX 2.0 SSD

Anicare Reindeer Tracker

Safety Pod

BLiXT solid state circuit breaker

Moto Watch 100

Lildog & Lilcat pet tracker

Rigado IoT Gateway

Livestock Tracker

Laird Connectivity sensors & gateways

BeST pump monitoring

Vestas Wind Turbines

zephyrproject.org/products-running-zephyr

450+ supported boards... and growing

Sipeed HiFive1

nRF9160 DK

STM32F746G Disco

M5StickC PLUS

TDK RoboKit 1

BBC micro bit v2

Blue Wireless Swan

Arduino Nano 33 Intel UP Squared BLE

LoRA Sensor Node

Microchip SAM E54

Xplained Pro

Raspberry Pi Pico

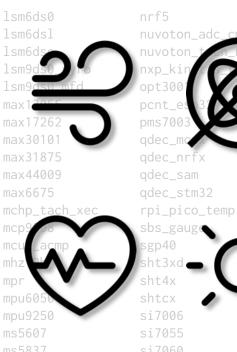
Altera MAX10

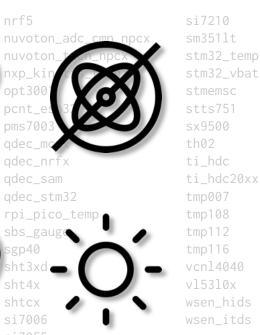
NXP i.MX8MP EVK

Adafruit Feather M0 LoRa

u-blox EVK-NINA-B3

docs.zephyrproject.org/latest/boards


120+ Sensors Already Integrated



adt7420
adxl345
adx1362
adxl372
ak8975
amg88xx
ams_as5600
ams_iAQcore
apds9960
bma280
bmc150_magn
bme280
bme680
bmg160
bmi160
bmi270
bmm150
bmp388

github.com/zephyrproject-rtos/zephyr/tree/main/drivers/sensor

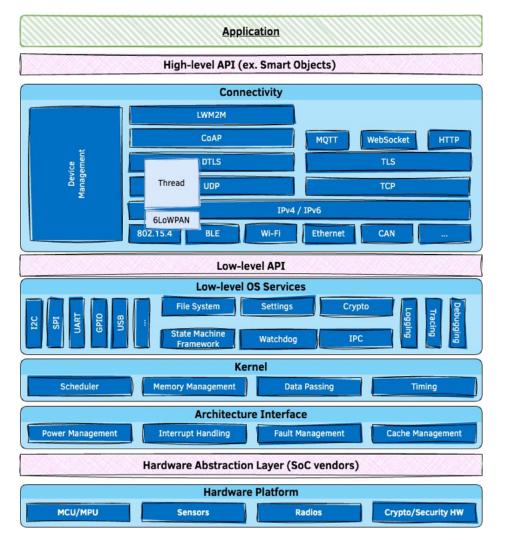
Supported Hardware Architectures

Cortex-M, Cortex-R & Cortex-A

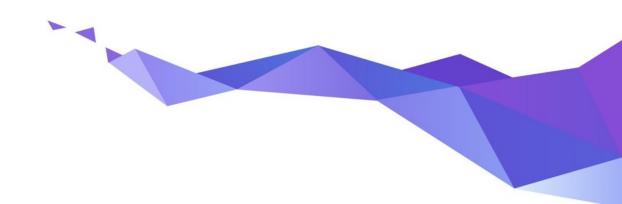
x86 & x86 64

32 & 64 bit

Vibrant Ecosystem

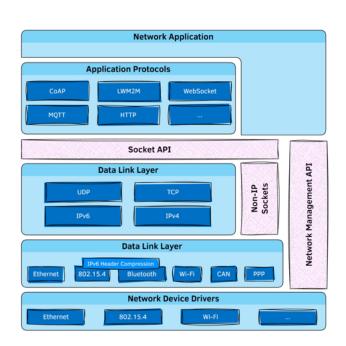


Training & Consulting


Architecture

Diving into Zephyr's features

IoT Connectivity Options



- Wide variety of communication protocols
 - o Ethernet, 802.15.4, Thread, LoRa, Bluetooth, CAN bus, ...
- **Core network protocols** like IPv6, IPv4, UDP, TCP, ICMPv4, and ICMPv6.
- **Security** (ex. TLS, DTLS, ...)
- Cloud integration using MQTT, CoAP and HTTP protocols
- Over-the-air updates
- Device management using OMA LwM2M 1.1 protocol

Native IP Stack

- Built from scratch, on top of Zephyr native kernel concepts
- Dual mode IPv4/IPv6 stack
 - DHCP v4, IPv4 autoconf, IPv6 SLAAC, DNS, SNTP
- Multiple network interfaces support
- Time Sensitive Networking support
- BSD Sockets-based API
- Supports IP offloading
- Compliance and security tested

Bluetooth Host and Mesh

- Bluetooth 5.3 compliant
- Highly configurable
- Portable to all architectures supported by Zephyr
- Low Energy & experimental Bluetooth Classic
- IPSP/6LoWPAN for IPv6 connectivity over Bluetooth LE
- Multiple HCI transports

Bluetooth Low Energy Controller

- **Bluetooth 5.3 compliant** and qualified (5.1)
- Support for multiple BLE radio hardware architectures
 - Nordic nRF5x on Arm Cortex-M
 - VEGAboard on RISC-V
- Proprietary radios (downstream only)
- Unlimited role and connection count
- Concurrent multi-protocol support ready
- Multiple advertiser and scanner instances

Zephyr USB Device Stack

- USB 2.0 & USB-C support
- Supports multiple MCU families (STM32, Kinetis, nRF, SAM,...)
- Supports most common devices classes: CDC, Mass Storage, HID, Bluetooth HCl over USB, DFU, USB Audio, etc.
- Tight integration with the RTOS
- Native execution support for emulated development on Linux
- WebUSB support

Power Management

- Goal: use as little power as possible
- Cross-platform (architecture / SoC agnostic)
- Tickless scheduler
- Handled by the kernel / Customizable by the user

Devicetree

Describe & **configure** the available hardware on the target system

Decouple the application from the hardware

```
&i2c1 {
    pinctrl-0 = <&i2c1_scl_pb8 &i2c1_sda_pb9>;
    pinctrl-names = "default";
    clock-frequency = <I2C_BITRATE_FAST>;
    status = "okay";
    1sm6ds1@6a {
        compatible = "st,lsm6dsl";
        reg = <0x06a >;
    };
    hts22105f {
        compatible = "st,hts221";
        reg = <0x5f >;
    };
    // ...
};
```


. dts file example

Secure boot / Device Management

- Leverage MCUboot as secure bootloader
- Application binary can be signed/encrypted
 - Can use hardware keys
- But also:
 - Downgrade prevention
 - Dependency checks
 - Reset and failure recovery
- Over-the-air (OTA) upgrades
 - OMA LwM2M, Eclipse hawkBit
 - Vendor offerings

Hardware security

Cryptography APIs

- Random Number Generation, ciphering, etc.
- Supported by crypto HW, or SW implementation (TinyCrypt)

• Trusted Firmware integration

- Firmware verification/encryption
- Device attestation
- Management of device secrets

Building on POSIX

Zephyr apps can run as native Linux applications

- Easier to debug/profile with native tools
- Connect to real devices using TCP/IP, Bluetooth, CAN
- Helps minimize hardware dependencies during the development phase

Re-use existing code & libraries by accessing Zephyr services through POSIX API

- Easier for non-embedded programmers
- Implementation is optimized for constrained systems
- Supported POSIX subsets: PSE51, PSE52, and BSD sockets

A real-time OS

Benchmark on Arm Cortex-M4F running at 120 MHz

Operation	Time
Thread create	2.5 µs
Thread start	3.6 µs
Thread suspend	3.3 µs
Thread resume	3.8 µs
Context switch (yield)	2.2 µs
Get semaphore	0.6 µs
Put semaphore	1.1 µs

Graphical User Interfaces

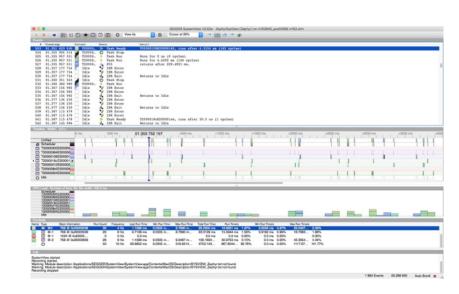
- Drivers available for various types of displays
 - o LCD
 - OLED
 - Touch panel displays
 - E-ink
- LVGL integration
- Support for video capture and output

Inter-Process Communication

- Built-in kernel services (see table)
- IPC service
 - 1-to-1 or 1-to-many communications
 - No-copy API
- zbus (Zephyr Message Bus)
 - 1-to-1, 1-to-many, or many-to-many channel-based communications
 - Synchronous or asynchronous

Object	Bidirectional?	Data structure
FIFO	×	Queue
LIFO	×	Queue
Stack	×	Array
Message queue	×	Ring buffer
Mailbox	V	Queue
Pipe	X	Ring buffer

Data passing objects available in Zephyr kernel

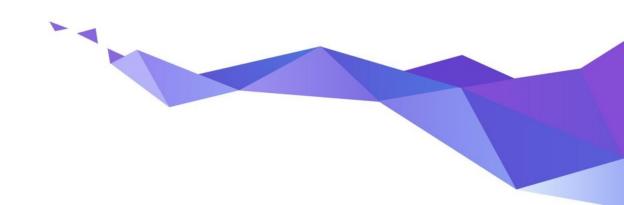


A typical zbus application architecture

Tracing & Debugging

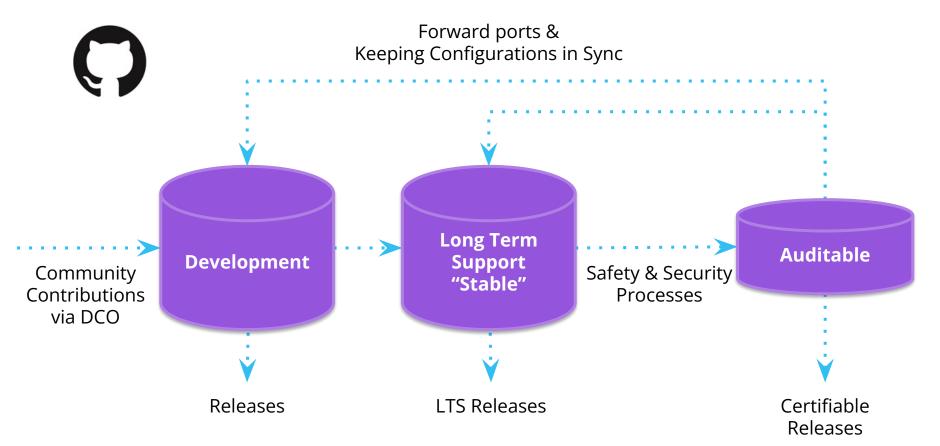
- Advanced logging framework
 - Multiple backends (UART, network, file system, ...)
 - Compile-time & runtime filtering
- **Tracing** framework
 - Visualize the inner-working of the kernel and its various subsystems
 - Object tracking (mutexes, timers, etc.)

Roadmap - 3.4 release and beyond



- New Sensor API (#13718)
- Zync synchronization primitives (<u>#48340</u>)
- USB-C improvements (<u>#38371</u>)
- USB device/host enhancements (#42066)
- Replace CivetWeb HTTP server (#46758)
- Better support for multi-core AMP SoCs (<u>#51833</u>)

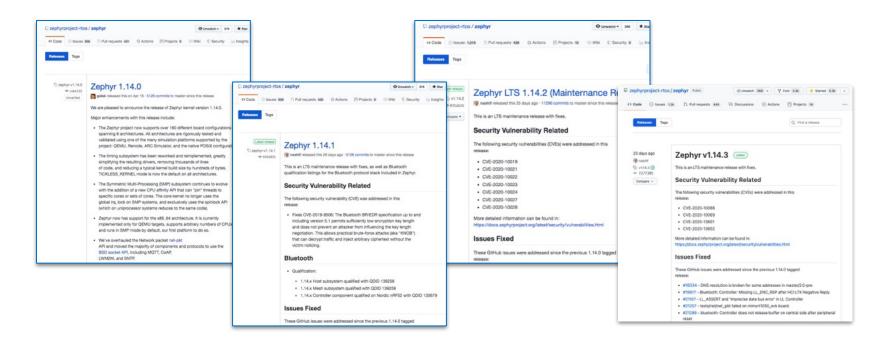
Note: Zephyr is an open-source project, and its roadmap is subject to change.



Safety & Security

Code Repositories

Long Term Support (Zephyr 2.7.x)



- Product Focused
- Current with latest Security Updates
- Compatible with new hardware
 - Functional support for new hardware is regularly backported
- Tested: Shorten the development window and extend the Beta cycle to allow for more testing and bug fixing
- Supported for 2+ years
- Doesn't include cutting-edge functionality

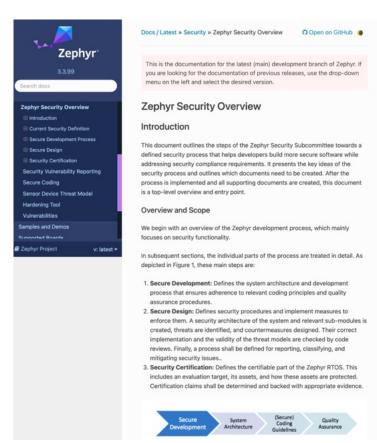
Long Term Support (LTS - 1.14)

Delivered bug fixes and latest security updates for 2 years!

Auditable

- An auditable code base will be established from a subset of the Zephyr OS LTS
- Code bases will be kept in sync
- More rigorous processes (necessary for certification) will be applied to the auditable code base.
- Processes to achieve selected certification to be:
 - Determined by Safety Committee and Security Committee
 - Coordinated with Technical Steering Committee

Building in Safety for LTS

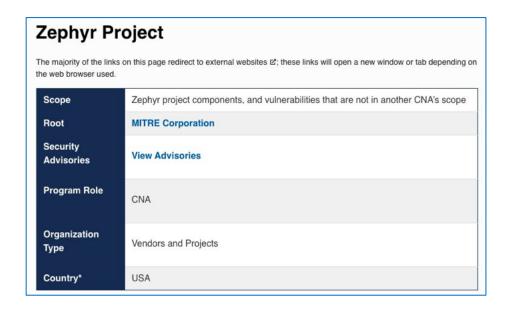


- Safety Committee established in 2019
 - o Community that understands safety considerations & implications.
 - Representatives from Parasoft, Intel, Synopsys, Google, NXP, Baumer, etc.
- Initial target is IEC 61508 SIL 3 / SC 3 (IEC 61508-3, 7.4.2.12, Route 3s) for a limited scope.
- Multiple safety activities in progress to establish safety plan, coding guideline compliance, traceability, requirements, test coverage, tooling, etc.
 - LTS 2 is starting point for Auditable code base
 - Zephyr Project <u>Coding Guidelines</u> based on MISRAC:2021
- 2023 The ephyr Pr Engagement with FSM and certification authority.

Project Security Documentation

- Project Security Overview
- Started with documents from other projects
- Built around Secure
 Development, Secure Design,
 and Security Certification
- Ongoing process, rather than something to just be accomplished

Software Supply Chain


- Zephyr ships an SBOM (Software Bill of Materials) with each release
- Downstream consumers can leverage built-in tools to, in turn, generate source & build SBOMs for their deliverables

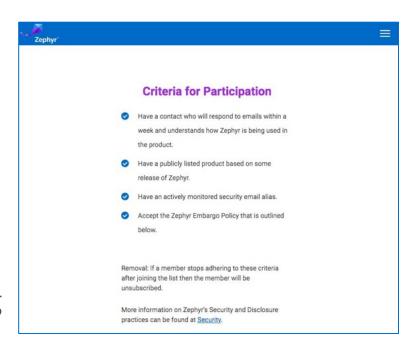
```
[...]
FileName: ./zephyr/zephyr.elf
SPDXID: SPDXRef-File-zephyr.elf
FileChecksum: SHA1: e74cebcac51dabd799957ac51e4edcd32541103d
[...]
Relationship: SPDXRef-File-zephyr.elf GENERATED_FROM SPDXRef-File-dev-handles.c
Relationship: SPDXRef-File-zephyr.elf GENERATED_FROM SPDXRef-File-isr-tables.c
Relationship: SPDXRef-File-zephyr.elf STATIC_LINK SPDXRef-File-libapp.a
Relationship: SPDXRef-File-zephyr.elf STATIC_LINK SPDXRef-File-libzephyr.a
Relationship: SPDXRef-File-zephyr.elf STATIC_LINK SPDXRef-File-libisr-tables.a
Relationship: SPDXRef-File-zephyr.elf STATIC_LINK SPDXRef-File-libkernel.a
[...]
```

CVE Numbering Authority

- Registered with MITRE in 2017
 - We issue our own CVEs
- Zephyr Project Security Incident Response Team (PSIRT)
 - Volunteers from the Security
 Subcommittee led by the Zephyr
 Security Architect.

OpenSSF Gold Badge

- Core Infrastructure Initiative
 Best Practices Program
- Awards badges based on "project commitment to security"
- Mostly about project infrastructure: is project hosting, etc following security practices
- Gold status since Feb, 2019



Vulnerability Alert Registry

- For an embargo to be effective, product makers need to be notified early so they can remediate
- Goal: Zephyr to fix issues within 30 days to give vendors 60 days before publication of vulnerability
- Product makers can register to receive these alerts for free by signing up at Vulnerability Alert Registry

Zephyr PSIRT: Remediation and Response

Advisory Issued by project on 20201208:

- Zephyr current release (2.4) does not use Fnet or other stacks.
- The Zephyr LTS release 1.14 contains an implementation of the TCP stack from Fnet.

Of the vulnerabilities reported in Fnet, 2, <u>CVE-2020-17468</u>, and <u>CVE-2020-17469</u>, are in the IPv6 Fnet code, one, <u>CVE-2020-17467</u>, affects Link-local Multicast Name Resolution LLMNR), and 2, <u>CVE-2020-24383</u>, and <u>CVE-2020-17470</u> affect DNS functionality.

None of the affected code has been used in the Zephyr project, while 1.14 does use the Fnet TCP, it does not use the affected IPv6, DNS or LLMNR code.

- now to magate those.

 AMNESIA:33 is the first study we have published under Project Memoria. In this study, we discuss the results of the security analysis of seven open source TCP/P9 stacks and report a bundle of 33 new waterabilities found in foror of the seven analyzed stacks that are used by major lot J.O.T.
- Four of the volverabilities in ANNESSA.33 are critical, with potential for months code execution on corban diverse. Exploiting these velociabilities could allow an attacker to take control of a device, this using it is an entry point on a network for interest connected devices, as a price for the lateral movement, as a persistence point on the large retrieval or as the first large of an attack. For enterprise organizations, this many markins as stored undermitted the lateral control of the lateral points of the lateral points or an attack or enterprise controlling. For concurrent, this means that their is Tolkiese may be used as part of large attack commonlines, such as botteres without them below access.

Total Total

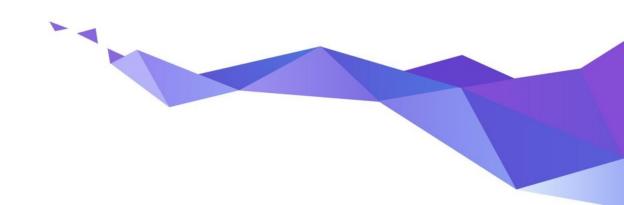
forescout.com/amnesia33/

research@forescout.com

sal fee 1-866-377-8771

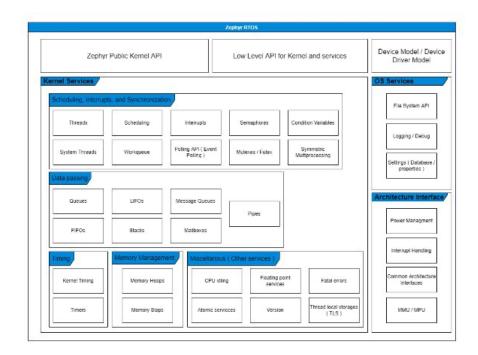
Zephyr Security Summary

<u>Documented secure</u> <u>coding practices</u>


Vulnerability response criteria publicly documented

Weekly Coverity scans
MISRA scans

SBOM generation


Certification

Initial certification focus

- Start with a limited scope of kernel and interfaces
- Initial target is IEC 61508 SIL 3 / SC 3 (IEC 61508-3, 7.4.2.12, Route 3s)
- x86 and ARM is initial focus
- Scope will be extended to include additional components as determined by the safety committee

Safety Collateral Proposal

hase	Assumed Collateral	Type of Doc	Owner	Sharing Model	
Safety Concept	Safety Plan and Safety Assessment Plan	Plan/Process	FSM	Platinum	- 1
	Verification / Validation / Integration Test Plans	Plan/Process	Testing WG	Public	
	Software Development Plan	Plan/Process	TSC	Public	
	Configuration and Change Management Plans	Plan/Process	TSC	Public	
	Software Architecture and Module Design Specification	Plan/Process	TSC	Public	
	Coding Guideline	Plan/Process	TSC	Public	
	Tools Documentation	Plan/Process	TSC	Public	
	Software Requirements	Code	TSC	Public	
	Software Safety Requirements Specification	Result Artifact	Safety WG	Platinum	
Detailed Test Phase	Tests (Integration, Arch / Module, Validation)	Code	TSC	Public	
	Code Review Report	Result Artifact	Safety WG	Platinum	
	Verification / Validation / Integration Test Reports	Result Artifact	Testing WG	Platinum	
	Fault Injection Test Report	Result Artifact	Testing WG	Platinum	
	Tools Classification	Result Artifact	Safety WG	Platinum	
	Tools Validation	Result Artifact	Safety WG	Platinum	
	Traceability Report	Result Artifact	Testing WG/FSM	Platinum	
	Test Coverage Report	Result Artifact	Testing WG/FSM	Platinum	
	Coding Guideline Compliance Report	Result Artifact	Safety WG	Platinum	
	Safety Analysis (e.g., FMEA)	Result Artifact	FSM	Platinum	
	Source Code	Code	TSC	Public	
	Software User Manual	Result Artifact	TSC	Platinum	
	Safety Manual	Result Artifact	FSM	Platinum	

Compliant Development: V-model

It is difficult to map a stereotypical open-source development

to the V-model

- Specification of features
- Comprehensive documentation
- Traceability from requirements to source code
- Number of committers and information known about them

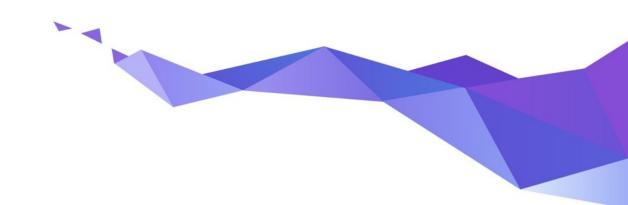
Zephyr RTOS
Software
safety
requirements

Intel IoTG
Market
Requirements

Zephyr RTOS
Software
safety
requirements

Zephyr RTOS
Software
safety
requirements

Zephyr RTOS
Software
safety
requirements


Zephyr RTOS
Software
softwar

Zephyr RTOS functional safety work products mapping to IEC 61508-3 V model

⇒ Provide the evidences that open source developers can map to compliance and meet all requirements

Ecosystem & Governance

Zephyr Project: Platinum Members

Zephyr Project: Silver Members

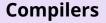
Vibrant Ecosystem

Training & Consulting

Firmwares & Libraries

Ecosystem // **Dev Tools**

IDE



Debuggers / Tracing Tools

LAUTERBACH

Emulation / Simulation

Ecosystem // Training & Consulting

Training & Consulting

Firmwares & Librarie

Training

Services & Consulting

Ecosystem // Firmwares & Libraries

Firmwares & Libraries

Security

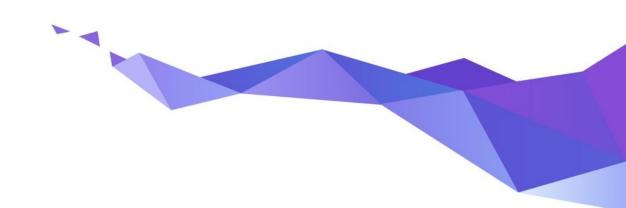
Language runtimes

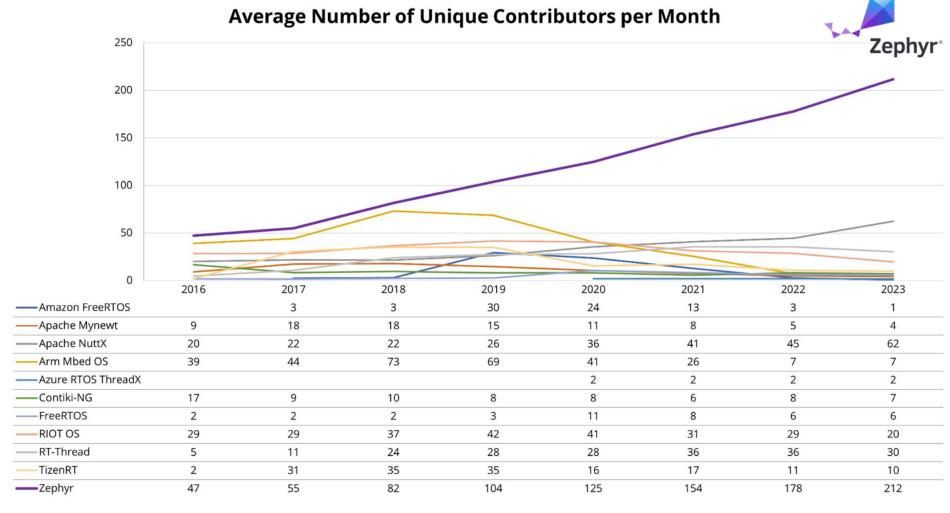
TinyML

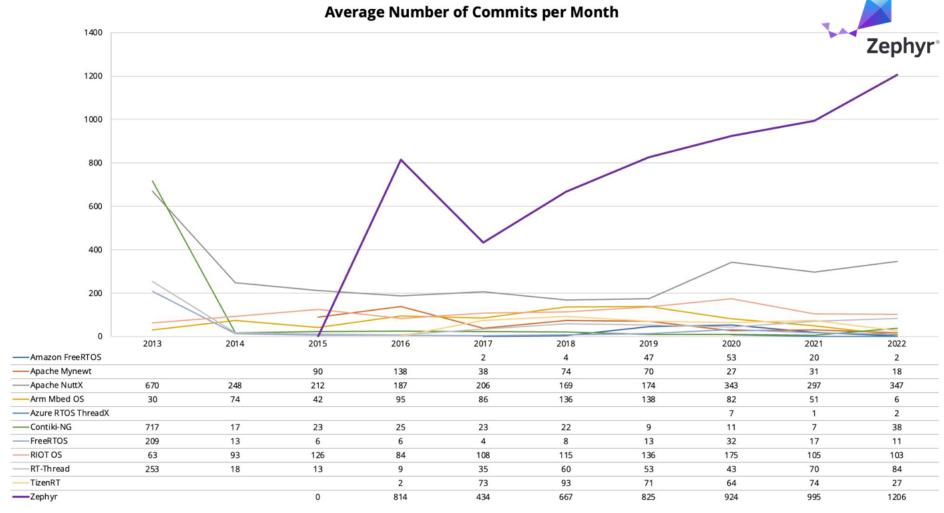
Others

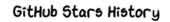
Ecosystem // Apps & Middlewares

Remote Management

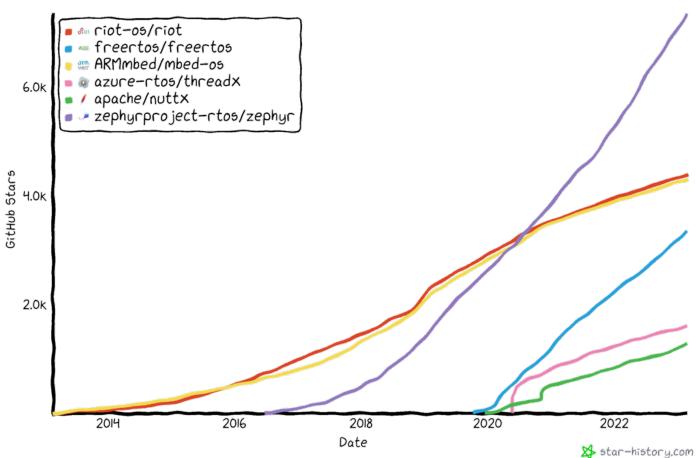


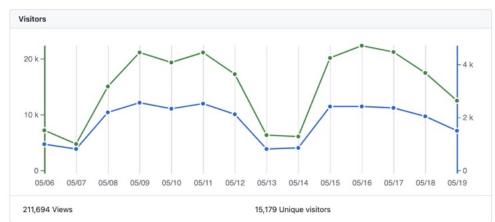

Robotics





Zephyr in the RTOS landscape




GitHub Clones & Unique Visitors

 $2023-05-06 \rightarrow 2023-05-19$

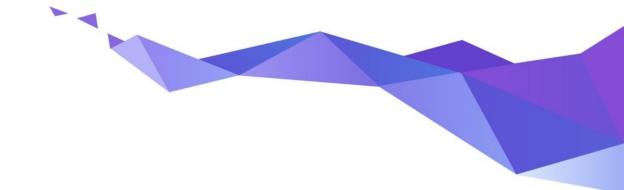
~476 unique clones per day ~1084 unique visitors per day

Zephyr Participation Information

zephyrproject.org

github.com/zephyrproject-rtos

lists.zephyrproject.org



chat.zephyrproject.org

zephyrproject.org

